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Abstract

The superconformal central charge is an important quantity for theories emerging from geometrical engineering of
Quantum Field Theory since it is linked, for example, to the scaling dimension of fields. Butti and Zaffaroni construction
of the central charge for toric Calabi-Yau threefold geometries is a powerful tool but its implementation could be quite
tricky. Here we present an equivalent new construction based on a 2-simplexes decomposition of the toric diagram.
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1. Introduction

In the context of String Theory, the AdS/CFT corre-
spondence represents a profound connection between
the isometries of spacetime and the symmetry of a quan-
tum field theory. In particular, the original formulation
states that the local geometry around a stack of N D3
branes in flat 10 dimensional spacetime has the form
AdS5 × S 5 and the physics at large N is holographically
dual to the N = 4 4d SCFT, defined on the boundary
of the AdS spacetime [1],[2],[3]. The geometry of the
CY cone transverse to the branes, and in particular of its
base referred to as horizon, determines the properties of
the dual gauge side. The correspondence can be gener-
alised to non-spherical horizons [4],[5] H5, a compact
5-dimensional Sasaki-Einstein space, so that the geome-
try is singular at the tip of the cone and some directions
of the branes may be wrapped in compact cycles around
the singularity. The local physics around the singularity
results in a dual gauge side either N = 2 or N = 1. The
R-symmetry of the SCFT plays a crucial role as its ’t
Hooft anomalies can be combined to give the central
charge a

a =
3
32

(
3TrR3 − TrR

)
, (1)

which represents a counting of the degrees of freedom of
the field theory. The connection between global symme-
try and geometry is expressed by the Gubser formula [6]

Vol(H5) =
π3

4
N2

a
, (2)
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where N is the unit of 5-form flux supported by the
compact horizon and a is the central charge of the dual
superconformal gauge theory. The R-charges of a general
supersymmetric theory can not be uniquely assigned
because any global symmetry factor can mix with the
U(1)R. However, in [7] it is shown that the R-charges
at the superconformal fixed point are unambiguously
determined as those maximize central charge.

The importance of the R-charges relies on the fact that
the scaling dimension ∆ of gauge-invariant operators de-
pends on its R-charge R as ∆ = 3R/2. The point is that
we need to specify the geometry of the horizon in order to
say what the associated SCFT is. A systematic construc-
tion of a singular CY cone has been developed in the case
of a toric space, which is defined as a T3 fibration over a
convex polygon. This type of cone has at least isometry
U(1)3 and the geometry is completely specified by the
toric polygon or toric diagram. Given a toric diagram,
there is a precise algorithm which allows one to construct
the associated brane tiling [8],[9],[10],[11],[12],[13] a
bipartite graph that contains all the information about
the gauge theory, i.e. gauge factors, matter fields and
their interaction). This construction is powerful since
from toric diagram and combinatorics we can obtain a
field theory and we can analyze it with well established
brane tiling techniques. A prominent example is the
computation of the central charge using a-maximization
[7].

As the connection between isometry and symmetry
works in both ways, one may expect that the computation
of quantities in the gauge theory has a counterpart in the
geometric side, and indeed a-maximization is equivalent
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to volume minimization [14],[15]. Moreover, in [16]
Butti and Zaffaroni developed an algorithm that allows
us to compute the unique superconformal R-charges and
the central charge of the SCFT directly from toric data.
In this letter, after having reviewed briefly the algorithm
given by Butti and Zaffaroni, we work out, in Section 3.1,
a new procedure in terms of 2-simplexes decomposition
of the toric diagram. This new procedure is in agreement
with the Butti and Zaffaroni one, indeed each can be
obtained starting from the other as shown in Section 3.2.
In Section 3.3 we link 2-simplexes to the Reeb vector
field and we give an interpretation in terms of isoradial
embedding. In the end, we are going to give a working
example and to discuss possible applications for future
research.

2. Central charge of toric gauge theories

In this section, we review the procedure to build up the
superconformal R-charges and the central charge a of a
superconformal gauge theory due to Butti and Zaffaroni.
First of all, let us discuss what information we need in the
field theory side to build up the central charge a; then we
are going to proceed with geometric side construction.

Let us consider a gauge theory with gauge group
G =

∏n
i=1 S U(N)i and a set F of bifundamental mat-

ter superfields Xi j that transform under the fundamental
representation of S U(N)i and under the antifundamental
representation of S U(N) j. Each field Xi j carries a charge
Ri j under the R-symmetry and the central charge a is a
combination of ’t Hooft anomalies Tr R and Tr R3, see
(1). We are interested in SCFT holographically dual to
a theory of gravity on AdS spacetime and holography
requires that Tr R = 0 at large N; the contribution of all
fermions yields

a =
9

32

|G| + ∑
Xi j∈F

(
Ri j − 1

)3

 , (3)

where the first term inside the parenthesis comes from
gauginos contribution to the anomaly. A toric theory
has at least U(1)2 × U(1)R global symmetry, where
these abelian factors mix together. Thus Ri j, which
are subject to the condition for anomaly cancellation,
are a linear combination of charges, made of three
variables. There may be other global abelian factors,
whose mixed anomaly with R-symmetry vanish, i.e.
Tr U(1)U(1)2

R = 0; this type of global factors are called
baryonic and do not mix with the R-symmetry [7].

In [16] Butti and Zaffaroni showed how a-
maximization can be performed by considering a point

B⃗ = (x, y) inside the polygon representing the toric dia-
gram. In other words, the superconformal R-charges of
a gauge theory associated to a toric geometry are deter-
mined by the point B⃗ and toric data. The procedure is
given in the following.
First, we define the product between two 2-dimensional
vectors as

⟨u, v⟩ := det
[
u(1) u(2)

v(1) v(2)

]
. (4)

For each extremal point in the toric diagram, we asso-
ciate a vector vi going from vertex i to vertex i + 1, with
i = 1, . . . , d mod(d) where d is the number of extremal
points. The vectors wi are orthogonal to the vi and they
define the (p, q)-web diagram, so the product ⟨vi, v j⟩

gives the entries in the adjacency matrix. For example,
if ⟨vi, v j⟩ = 2 there are two fields connecting associated
nodes in the quiver.
The next step is to define a set C, made by all posi-
tive ⟨vi, v j⟩. These are given by ordered pairs of vectors
(vi, v j) such that the associated (p, q)-web diagram vec-
tor wi is rotated counterclockwise to w j by an angle
smaller than π.
At this point, to each vertex we associate a trial R-charge
ai and to each element (vi, v j) in the set C we associate
the trial R-charges combination ai+1 + . . . + a j. This
has a pictorial interpretation at the toric diagram level:
moving a (p, q)-web vector wi to w j, vertices from i + 1
to j are enclosed and so one picks up their trial charge.
For example, if ⟨v1, v3⟩ = 2 then to the two fields a trial
R-charge a2 + a3 is given. As we know, the trial charges
must satisfy the condition

d∑
i=1

ai = 2 . (5)

The final step is to build up the quantity

a =
9

32

AP +
∑
(i, j)

|⟨vi, v j⟩|
(
ai+1 + . . . + a j − 1

)3
 , (6)

where AP is the area of the polygon which represents
the toric diagram; (i, j) ∈ C and we must maximize it
over the independent charges ai. Here we can notice
that it is strange that the polygon area appears while the
R-charges are expressed not in terms of areas somehow.

This procedure gives us a way to count fields from
toric data and associate them a trial R-charge; in princi-
ple this is a maximization that can involve more than two
variables. However, Butti and Zaffaroni give an ansatz
for each ai so that maximization of (6) corresponds to
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minimization of the volume of the Sasaki-Einstein asso-
ciated to the given toric geometry, hence reducing the
number of variables down to two: the coordinates (x, y)
of a point B⃗. We have to note that the point B⃗ is noth-
ing but the projection of the Reeb vector b⃗ = 3(1, x, y)
over the Z2 lattice up to a numerical constant. Butti and
Zaffaroni proposed that to each vertex of the polygon,
we must associate another vector ri that connects a point
(x, y) inside the toric diagram to the vertex i. Then

li(x, y) :=
⟨vi−1, vi⟩

⟨ri−1, vi−1⟩⟨ri, vi⟩
, (7)

and the trial charges are written as functions of (x, y)

ai(x, y) = 2
li(x, y)∑d

k=1 lk(x, y)
. (8)

Inserting (8) into (6) we get the central charge a in terms
of the two coordinates of the Reeb vector on the toric di-
agram and the maximization of the central charge yields
(x̄, ȳ), such that the theory is superconformal.

Let us now discuss what happens in case the polygon
has some non extremal points. We denote such points
as qi and we associate to them some trial R-charge bi.
Recall that vi are defined such that they connect two
successive extremal points, that is there are some non
extremal qi, vi just pass over them to reach vi+1; see
Figure 1. For a side with qi, there are more than one
vector w of the (p, q)-web, but all of them are parallel.
Suppose, as in Figure 1, that a side of the polygon has
vertices i and i + 1 with a q in the middle; in moving a
vector wi−1 to wi we have two choices, namely stopping
before or after the point q. These choices correspond to
fields with trial charges ai and ai + bi, so we can assign
to all field a trial charge with the condition

d∑
i=1

ai +

d∑
j=1

b j = 2 , (9)

where d is the number of not extremal points. In [16],
it is pointed out that a-maximization sets all bi = 0, so
Butti and Zaffaroni suggest that not extremal points are
not relevant in determining the superconformal point of
toric theories2.

3. 2-simplexes decomposition and symplexic central
charge

Let us start to discuss how to decompose the toric dia-
gram into 2-simplexes and how to link the araes of these

2This point has probably a more exhaustive and deeper geometrical
meaning and justification which must be investigated in the future.

i − 1

i

qi

i + 1

vi−1

vi

Figure 1: An example of a side of a polygon with a non extremal point.

triangles to the trial R-charge, so to the central charge,
thanks to equation (6). The basic idea is very simple:
take the arbitrary point B⃗ = (x, y) which corresponds
to the Reeb vector projection on the toric diagram and
connect this point with each vertex point of the diagram.
In the previus section, we called these vectors ri and so
we employed this notation also here; moreover, from
Figure 2, it is obvious that the point B⃗ = (x, y) must be
inside the diagram. This construction for a generic toric
diagram provides a set of areas A j given by the triangles
delimited by r j, r j+1 and the toric diagram edge v j, as
reported in Figure 2.

v1

v2

v3

v4

v5

v6
r1

r2

r3

r4

r5

r6

A1

A2

A3

A4
A5

A6

Figure 2: Generic 2-simplexes decomposition of a generic toric dia-
gram.

The area A j can be computed easily remembering that
the toric diagram lies on a Z2 lattice plane and so vectors
v j and r j do not have the third component v(3)

j = r(3)
j = 0,

hence

A j =
1
2

∣∣∣∣∣∣∣∣∣det


î ĵ k̂

r(1)
j r(2)

j 0
v(1)

j v(2)
j 0


∣∣∣∣∣∣∣∣∣ =

1
2

∣∣∣∣∣∣∣det

r(1)
j r(2)

j

v(1)
j v(2)

j


∣∣∣∣∣∣∣ .

(10)
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3.1. Rule for constructing the trial R-charges ai from
areas A j

Let us give the rule to build up all the trial R-charges
ai in terms of the areas of the 2-simplexes A j of triangles
constructed inside the toric diagram using the internal
point B⃗ = (x, y) as a vertex and v j as the base according
to (10). Let us derive this rule with an example: the
zeroth Hirzebruch surface (F0) whose toric diagram is in
Figure 3.

v1

v2v3

v4 r1

r2

r3

r4

A1

A2
A3

A4

(0,−1)
p1

p2

p3

p4

Figure 3: The toric diagram of F0.

From toric diagram above we can compute the vectors
vi and ri

v1 = (1, 1) , r1 = (−x,−1 − y) ;

v2 = (−1, 1) , r2 = (1 − x,−y) ;

v3 = (−1,−1) , r3 = (−x, 1 − y) ;

v4 = (1,−1) , r4 = (−1 − x,−y) ;

(11)

and from these we get the areas of the four triangles

A1 =
1
2

(1 − x + y) ;

A2 =
1
2

(1 − x − y) ;

A3 =
1
2

(1 + x − y) ;

A4 =
1
2

(1 + x + y) ;

(12)

and the set C

⟨v1, v2⟩ = 2 ;

⟨v4, v1⟩ = 2 ;

⟨v2, v3⟩ = 2 ;

⟨v3, v4⟩ = 2 . (13)

According to Butti-Zaffaroni procedure R-charges can
be computed starting from (8) using (7):

a1 =
1
2

(
− x2 + (y − 1)2

)
=

=
16A2A3

8A1A2 + 8A2A3 + 8A3A4 + 8A4A1
;

a2 =
1
2

(
1 + 2x + x2 − y2

)
=

=
16A3A4

8A1A2 + 8A2A3 + 8A3A4 + 8A4A1
;

a3 =
1
2

(
− x2 + (y + 1)

)
=

=
16A4A1

8A1A2 + 8A2A3 + 8A3A4 + 8A4A1
;

a4 =
1
2

(
1 − 2x + x2 − y2

)
=

16A1A2

8A1A2 + 8A2A3 + 8A3A4 + 8A4A1
.

(14)

It can be noted that all expressions above are of the form

ai =
⟨vi−1, vi⟩

D

∏
q,i, i−1

(2A j) , (15)

where the product involves all areas A j which do not
have vi nor vi−1 as an edge3 and D is a combination of all
the areas A j; in this case D = 8A1A2 + 8A2A3 + 8A3A4 +

8A4A1. This explicit expression for D can be recovered
in fully generality using ansatz (15) and the constraint∑d

k=1 ak = 2 where d is the number of extremal points of
the diagram:

d∑
k=1

1
D
⟨vk−1, vk⟩

∏
q,k, k−1

(2Aq) = 2 , (16)

which gives

D =
1
2

d∑
k=1

⟨vk−1, vk⟩
∏

q,k, k−1

(2Aq) , (17)

3This is the meaning of q , i, i − 1.
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since D does not depend on k because it is a combination
of all the areas; this is claimed looking at several exam-
ples. From (17) and using relations (13), we get exactly
the right denominator D = 8A1A2 + 8A2A3 + 8A3A4 +

8A4A1. Plugging (17) back in (15) we get the general
form of the trial R-charges

ai = 2
⟨vi−1, vi⟩

∏
q,i, i−1(2Aq)∑d

k=1⟨vk−1, vk⟩
∏

q,k, k−1(2Aq)
; (18)

these R-charges do the right job in all cases, as can be
seen looking at the formal equivalence between this pro-
cedure and the one proposed by Butti and Zaffaroni, in
Paragraph 3.2.

At this point, the trial R-charges are related to the ar-
eas of the 2-simplexes with which we have decomposed
the toric diagram; moreover, the area of the toric dia-
gram is nothing but the sum of all the triangles areas
AP =

∑d
k=1 Ak and so the central charge is completely

determined by the areas A j. The central charge (6) reads

a =
9

32

[ d∑
k=1

Ak +
∑
(i, j)

⟨vi, v j⟩×

(
2
∑ j

s=i+1⟨vs−1, vs⟩
∏

q,s, s−1(2Aq)∑d
k=1⟨vk−1, vk⟩

∏
q,k, k−1(2Aq)

− 1
)3]
,

(19)

since these areas are function of the point (x, y) the cen-
tral charge is a function of only these two variables, in
agreement with the Butti and Zaffaroni construction.

We conclude this paragraph with a comment
on the structure of the ai: we can think to
Z =

∑d
k=1⟨vk−1, vk⟩

∏
q,k, k−1(2Aq) as the point depen-

dent partition function of the toric diagram while
⟨vi−1, vi⟩

∏
q,i, i−1(2Aq) is the single realization; hence,

we can think the trial central charge ai(x, y) as some
probability density apart from factor two which can be
reabsorbed in a new definition Pi(x, y) = ai(x,y)

2 .

3.2. From Butti-Zaffaroni to symplexic charges
Let us show the equivalence between Butti and Zaf-

faroni trial charges, equation (8), and the symplexic
charges (18). Starting from (8), using (7) and some
algebra, we get

ai = 2
⟨vi−1,vi⟩

⟨ri−1,vi−1⟩⟨ri,vi⟩∑d
k=1

⟨vk−1,vk⟩

⟨rk−1,vk−1⟩⟨rk ,vk⟩

=

= 2
⟨vi−1,vi⟩

⟨ri−1,vi−1⟩⟨ri,vi⟩∑d
k=1⟨vk−1,vk⟩

∏
q,k,k−1⟨rk ,vk⟩∏d

q=1⟨rk ,vk⟩

=

= 2
⟨vi−1, vi⟩

∏
q,i,i−1⟨rq, vq⟩∑d

k=1⟨vk−1, vk⟩
∏

q,k,k−1⟨rq, vq⟩
;

(20)

now using (10) we arrive to equation (18)

ai = 2
⟨vi−1, vi⟩

∏
q,i,i−1(2Aq)∑d

k=1⟨vk−1, vk⟩
∏

q,k,k−1(2Aq)
; (21)

this writing simplified a lot the determination of trial
R-charges. The equivalence between Butti and Zaffa-
roni procedure and the symplexic decomposition proce-
dure makes it manifest that all anomalies cancellation
discussed in the appendices of [16] are valid in this ap-
proach too.

3.3. Reeb vector, areas, R-charges and isoradial embed-
ding

In this section we want to point out the link between
the areas and the work integral of the projected Reeb
vector B⃗; in fact from the point B⃗ = (x, y) we can write
down an expression for the toric diagram area and for
triangles’ areas.
The area AP of the toric diagram P can be written in term
of the area 2-form ω = dx ∧ dy:

AP =

∫
Ω

α, (22)

where Ω = {(x, y) ∈ P}. From ω we can find a one-form
α such that dω = α: the result is α = xdy−ydx

2 ; indeed
ω = dα = dx∧dy

2 −
dy∧dx

2 = dx ∧ dy. At this 1-form is
associated a vector field with component 1

2 (−y, x) and
we note that this is the point B⃗ after the transformation
belonging to S L(2,Z) given by the matrix4

M =
[
0 −1
1 0

]
. (23)

A crucial point to note is that this M ∈ S L(2,Z) transfor-
mation does not modify neither the area of the polygon
nor the areas of the 2-simplexes since it is a π2 -rotation,
but in this toric phase the projected Reeb vector is ex-
actly the vector field associated to the 1-form α up to a
numerical constant. Hence polygon’s area is given by

AP =

∫
Ω

ω =

∫
Ω

dα =︸︷︷︸
S tokes′ T HM

∫
∂Ω

α, (24)

where ∂Ω is the boundary of the polygon and so its edges.
Splitting the integral over ∂Ω in a sum of integral over

4Toric diagrams are defined up to an S L(2,Z) tranformation and so
physics is S L(2,Z) invariant.
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each edge S i, we get

AP =
∑

i

∫
S i

1
2

(xdy − ydx) =

=
1
2

∑
i

∫
S i

(−y, x) · (dx, dy) =

=
1
2

∑
i

∫
S i

B⃗ · d⃗l :=
1
2

∫
Γ

B⃗ · d⃗l,

(25)

where Γ is the curve that enclose the toric diagram. At the
same manner, we can write the area of a single triangle,
A j, using the projected Reeb vector:

A j =
1
2

∑
i

∫
si

B⃗ · d⃗l :=
1
2

∫
γq

B⃗ · d⃗l, (26)

where now si are the edges of the triangle and γq is the
curve that enclose the are A j. These relations are intuitive
since if we move the point B⃗ we modify the areas A j as
well.
Moreover, we know that every ai(x, y) can be expressed
in terms of the triangles’ areas and so they are intimately
related to the projected Reeb vector’ work integral:

ai = 2
⟨vi−1, vi⟩

∏
q,i, i−1

∫
γq

B⃗ · d⃗l∑d
k=1[⟨vk−1, vk⟩

∏
q,k, k−1

∫
γq

B⃗ · d⃗l]
. (27)

We can give an interpretation of these at the level of
brane tiling [8],[9],[10],[11],[12] thanks to isoradial em-
bedding [13] where every R-charge is thought as an angle.
Let us call R j the R-charge of a field j around a vertex
of the brane tiling; since every R-charge of a field is a
combination of some trial R-charge (27), R j reads

R j =
∑

l j

al j =

∑
l j
⟨vl j−1, vl j⟩

∏
q,l j, l j−1

∫
γq

B⃗ · d⃗l

D
, (28)

where we make use of (17) and (26); isoradial embed-
ding angle is recovered multiplying by π both members.
We can imagine that every term in the RHS sum con-
tributes with an angle and that their sum gives the isora-
dial embedding angle θ j = πR j, hence:

∑
l j

θ j

nl j

=
π
∑

l j
⟨vl j−1, vl j⟩

∏
q,l j, l j−1

∫
γq

B⃗ · d⃗l

D
; (29)

with the consistency condition
∑

l j
1

nl j
= 1. By eliminat-

ing sums, rearranging terms and use Fubini theorem5 we

5Using an explicit parametrization of the q-th curve in term of a
parameter tq, we get a product of ordinary integrals that can be rewritten
as a q-dimensional integral on the domain, given by the product of
the single domains of parameters tq, and with integrand given by the
product of the single integrand.

get

nl j =
Dθ j

⟨vl j−1, vl j⟩π

1∫
V

∏
q,l j, l j−1[B⃗(tq) · γ(tq)dtq]

, (30)

where V is the q-dimensional integration domain. The
isoradial embedding angle θ j is partitioned into smaller
angles; how much the single al j counts in the partitioning
is expressed by (30): the larger are the areas enter in al j ,
the smaller is nl j and the greater is the contribution to
the isoradial embedding angle θ j, as we expected.

4. Examples

Let us report two examples as working gym to build
up symplexic central charge.

4.1. Example 1: C3

Z3

We start with a simple abelian orbifold of C3, its toric
diagram is reported in Figure 4.

v1

v2

v3

r1

r2

r3

A1

A2
A3

(0, 0)

Figure 4: Toric diagram of C3

Z3
.

Quantities of interest are

v1 = (2, 1) , r1 = (2 − x, 1 − y);

v2 = (−1, 1) , r2 = (1 − x, 2 − y);

v3 = (−1,−2) , r3 = (−x,−y);

(31)

and areas are

A1 =
1
2

(2y − x) ;

A2 =
1
2

(3 − x − y) ;

A3 =
1
2

(2x − y) .

(32)
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The set C contains

⟨v1, v2⟩ = 3 ;

⟨v2, v3⟩ = 3 ;

⟨v3, v1⟩ = 3 ;

and using equations 18 and 19 (or equivalently 6) we
obtain the trial R-charges

a1 =
2A2

A1 + A2 + A3
=

2
3

(3 − x − y) ;

a2 =
2A3

A1 + A2 + A3
=

2
3

(2x − y) ;

a3 =
2A1

A1 + A2 + A3
=

2
3

(2y − x) . (33)

and the central charge a,

a =
9

32

[3
2
+ 3

(
2
3

(2x − y) − 1
)3

+

3
(

2
3

(2y − x) − 1
)3

+ 3
(

2
3

(3 − x − y) − 1
)3 ]
=

=
3

64
[32y3 − 9 − 48y(x − 5)x − 96x2+

32x3 − 48y2(2 + x)].

(34)

Note that this construction fixes the convention for the
area of the elementary triangle AT , those that represent
the toric diagram for C3, while in the Butti and Zaffaroni
construction this is not fixed6. The area is fixed to
AT =

1
2 . This function has a maximum at (x̄, ȳ) = (1, 1)

and all the R-charges are ai =
2
3 . This is exactly the

result we would get if we implemented the the central
charge using Butti and Zaffaroni procedure.

4.2. Example 2: SPP
Consider now the Suspended Pinch Point (SPP)

singularity, the toric diagram is drown in figure 5.

The interesting quantities are

v1 = (0, 1) , r1 = (1 − x,−y) ;

v2 = (−1, 0) , r2 = (1 − x, 1 − y) ;

v3 = (0,−2) , r3 = (−x, 1 − y) ;

v4 = (1, 1) , r4 = (−x,−1 − y) ;

(35)

6This means that we can choose the normalization AT =
1
2 or

AT = 1. This has an impact on the value of the toric diagram area that
appears in Butti and Zaffaroni central charge but this it does not alter
the maximization procedure since it is only a constant

v1

v2

v3

v4

r1

r2

r3

r4

A4

A1

A2

A3
(0, 0) q

p1

p2p3

p4

Figure 5: Toric diagram of SPP.

and the areas are

A1 =
1
2

(1 − x) ;

A2 =
1
2

(1 − y) ;

A3 = x;

A4 =
1
2

(1 − x + y) ;

(36)

The set C is given by

⟨v1, v2⟩ = 1 ;

⟨v2, v3⟩ = 2 ;

⟨v4, v2⟩ = 1 ;

⟨v3, v4⟩ = 2 ;

⟨v4, v1⟩ = 1 . (37)
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Trial R-charges are

a1 =
2A2A3

A2A3 + A3A4 + 2A4A1 + 2A1A2
=

=
2

2 − x
x (1 − y) ;

a2 =
2A3A4

A2A3 + A3A4 + 2A4A1 + 2A1A2
=

=
2

2 − x
x (1 − x + y) ;

a3 =
4A4A1

A2A3 + A3A4 + 2A4A1 + 2A1A2
=

=
2

2 − x
(1 − x) (1 − x + y) ;

a4 =
4A1A2

A2A3 + A3A4 + 2A4A1 + 2A1A2
=

=
2

2 − x
(1 − x) (1 − y) ;

(38)

the central charge a, from equation 19 has a maximum at

x̄ = 1 −
1
√

3
;

ȳ =
1
2

(
1 −

1
√

3

)
; (39)

where

a1 = a2 = 1 −
1
√

3
;

a3 = a4 =
1
√

3
(40)

5. Conclusions

The central charge for theories arising from toric CY
threefold can be computed from a completely combina-
toric procedure since toric geometry is essentially com-
binatorics. Procedure presented here is based on a 2-
simplexes decomposition of the toric diagram and the
central charge is written only in term of areas of these
simplexes using (19). Areas of these triangles are easily
computed thanks to relation (10) and then trial R-charges
are constructed according to (18). On the one hand sim-
plexes procedure makes the link between the triangles
areas and the central charge more evident. On the other
hand the time cost is reduced compared to the Butti and
Zaffaroni procedure: for the generic example of Figure
2, computation time for a single trial R-charge is reduced
from 0.008376s to 0.001536s, about 18% of the time
needed to run out the Butti and Zaffaroni procedure.

An interesting point to be pointed out is that these
areas can also be calculated using contour integral of
the Reeb vector field and that they can be linked to the
isoradial embedding angle, providing an interpretation
at brane tiling level; it can be better understood and
extended to the five brane system in a future work.

Two last comments are in order. We see in Section 3.1
that we can interpret Z =

∑d
k=1⟨vk−1, vk⟩

∏
q,k, k−1(2Aq)

as the point dependent partition function of the toric
diagram. Thermodynamics variables associated to this
partition function can contain information about the ge-
ometry of the toric CY variety and so of the field theory.
The computation of the thermodynamic variables associ-
ated with this partition function could be the subject of a
future work.
The final point is about a possible generalization to other
models. The construction in term of 2-simplexes decom-
position holds for (3+1)-dimensional theories but it looks
easy to adapt to cases of different dimensions contrary
to the procedure of Butti and Zaffaroni. The crucial dif-
ference lies in the dimension of the Sasaki-Einstein base,
and so in the dimension of the CY cone that we need
to get the 10-dimensional background space. Indeed
if we want a (5+1)-dimensional superconformal field
theory we have to embed D5-branes into a M5,1 × CY4
space-time: so this CY cone has 2 complex dimensions
and its toric diagram is a segment; 2-simplexes are now
1-simplexes and areas are now segments. In geometrical
engineering of QFTs with a 2n-dimensional supercon-
farmal field theory, as the one (n = 2) treated in this
work, we need a CY cone of dimension 10 − 2n and so
its toric diagram is a ( 10−2n

2 − 1)-dimensional object; 2-
simplexes now are ( 10−2n

2 − 1)-simplexes. The possibility
of extending the procedure to field theories with d , 4
can be approached in future works also studying whether
such procedures can be applied to odd-dimensional field
theories emerging from M-theory.

Acknowledgment
This work was born from the Master’s Degree thesis

of Federico Manzoni collaborating with Salvo Mancani,
PhD student of Fabio Riccioni. I thank Professor Fabio
Riccioni, as master thesis advisor, and Professor Mas-
simo Bianchi for interesting discussions.

References

[1] J. M. Maldacena, The Large N limit of superconformal
field theories and supergravity, Adv. Theor. Math. Phys. 2
(1998) 231–252. arXiv:hep-th/9711200, doi:10.1023/A:
1026654312961.

8

http://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961


[2] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, Gauge theory
correlators from noncritical string theory, Phys. Lett. B 428
(1998) 105–114. arXiv:hep-th/9802109, doi:10.1016/
S0370-2693(98)00377-3.

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2 (1998) 253–291. arXiv:hep-th/9802150, doi:
10.4310/ATMP.1998.v2.n2.a2.

[4] D. R. Morrison, M. R. Plesser, Nonspherical horizons. 1., Adv.
Theor. Math. Phys. 3 (1999) 1–81. arXiv:hep-th/9810201,
doi:10.4310/ATMP.1999.v3.n1.a1.

[5] I. R. Klebanov, E. Witten, Superconformal field theory on
three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536
(1998) 199–218. arXiv:hep-th/9807080, doi:10.1016/
S0550-3213(98)00654-3.

[6] S. S. Gubser, Einstein manifolds and conformal field theories,
Physical Review D 59 (2) (1998). arXiv:hep-th/9807164,
doi:10.1103/PhysRevD.59.025006.

[7] K. A. Intriligator, B. Wecht, The Exact superconformal R
symmetry maximizes a, Nucl. Phys. B 667 (2003) 183–200.
arXiv:hep-th/0304128, doi:10.1016/S0550-3213(03)
00459-0.

[8] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, B. Wecht,
Gauge theories from toric geometry and brane tilings, JHEP
01 (2006) 128. arXiv:hep-th/0505211, doi:10.1088/
1126-6708/2006/01/128.

[9] S. Franco, A. Hanany, D. Vegh, B. Wecht, K. D. Kennaway,
Brane Dimers and Quiver Gauge Theories, Journal of High
Energy Physics 2006 (01) (2006) 096–096. arXiv:hep-th/
0504110, doi:10.1088/1126-6708/2006/01/096.

[10] A. Hanany, K. D. Kennaway, Dimer models and toric diagrams
(2005). arXiv:hep-th/0503149.

[11] S. Franco, Bipartite Field Theories: from D-Brane Probes to Scat-
tering Amplitudes, JHEP 11 (2012) 141. arXiv:1207.0807,
doi:10.1007/JHEP11(2012)141.

[12] S. Franco, A. Uranga, Bipartite Field Theories from D-Branes,
JHEP 04 (2014) 161. arXiv:1306.6331, doi:10.1007/
JHEP04(2014)161.

[13] A. Hanany, D. Vegh, Quivers, tilings, branes and rhombi,
Journal of High Energy Physics 2007 (10) (2007) 029–029.
doi:10.1088/1126-6708/2007/10/029.
URL http://dx.doi.org/10.1088/1126-6708/2007/
10/029

[14] D. Martelli, J. Sparks, S.-T. Yau, The Geometric dual of a-
maximisation for Toric Sasaki-Einstein manifolds, Commun.
Math. Phys. 268 (2006) 39–65. arXiv:hep-th/0503183,
doi:10.1007/s00220-006-0087-0.

[15] D. Martelli, J. Sparks, S.-T. Yau, Sasaki-Einstein mani-
folds and volume minimisation, Commun. Math. Phys. 280
(2008) 611–673. arXiv:hep-th/0603021, doi:10.1007/
s00220-008-0479-4.

[16] A. Butti, A. Zaffaroni, R-charges from toric diagrams and
the equivalence of a-maximization and Z-minimization, JHEP
11 (2005) 019. arXiv:hep-th/0506232, doi:10.1088/
1126-6708/2005/11/019.

9

http://arxiv.org/abs/hep-th/9802109
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802150
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9810201
https://doi.org/10.4310/ATMP.1999.v3.n1.a1
http://arxiv.org/abs/hep-th/9807080
https://doi.org/10.1016/S0550-3213(98)00654-3
https://doi.org/10.1016/S0550-3213(98)00654-3
http://arxiv.org/abs/hep-th/9807164
https://doi.org/10.1103/PhysRevD.59.025006
http://arxiv.org/abs/hep-th/0304128
https://doi.org/10.1016/S0550-3213(03)00459-0
https://doi.org/10.1016/S0550-3213(03)00459-0
http://arxiv.org/abs/hep-th/0505211
https://doi.org/10.1088/1126-6708/2006/01/128
https://doi.org/10.1088/1126-6708/2006/01/128
http://arxiv.org/abs/hep-th/0504110
http://arxiv.org/abs/hep-th/0504110
https://doi.org/10.1088/1126-6708/2006/01/096
http://arxiv.org/abs/hep-th/0503149
http://arxiv.org/abs/1207.0807
https://doi.org/10.1007/JHEP11(2012)141
http://arxiv.org/abs/1306.6331
https://doi.org/10.1007/JHEP04(2014)161
https://doi.org/10.1007/JHEP04(2014)161
http://dx.doi.org/10.1088/1126-6708/2007/10/029
https://doi.org/10.1088/1126-6708/2007/10/029
http://dx.doi.org/10.1088/1126-6708/2007/10/029
http://dx.doi.org/10.1088/1126-6708/2007/10/029
http://arxiv.org/abs/hep-th/0503183
https://doi.org/10.1007/s00220-006-0087-0
http://arxiv.org/abs/hep-th/0603021
https://doi.org/10.1007/s00220-008-0479-4
https://doi.org/10.1007/s00220-008-0479-4
http://arxiv.org/abs/hep-th/0506232
https://doi.org/10.1088/1126-6708/2005/11/019
https://doi.org/10.1088/1126-6708/2005/11/019

	Introduction
	Central charge of toric gauge theories
	2-simplexes decomposition and symplexic central charge
	Rule for constructing the trial R-charges ai from areas Aj
	From Butti-Zaffaroni to symplexic charges
	Reeb vector, areas, R-charges and isoradial embedding

	Examples
	Example 1: C3Z3
	Example 2: SPP

	Conclusions

