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Abstract: This short work is intended as introductory notes to the study of condensed matter physics by
treating some specific basic topics useful for advanced study in this field. We follow [1] in general, [2] for chapter
2, [3] for chapter 3 and [4], [5] for chapter 4.
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1 Bravais lattice and X-rays scattering

1.1 Bravais lattice, basis, reciprocal lattice and Miller indexes
A Bravais1 lattice is an ideal model of crystal solids, spanned by a 1,2 or 3 primitive vectors (depending on the
number of the system’s dimensions). The simplest is the simple cubic (SC) lattice; example of others lattices are
the FCC (face centered cubic) or the BCC (base centered cubic); generally speaking it exist 17 Bravais lattices
in 3D systems. A vector belongs at the Bravais lattice if is in the form

~R = n1 ~a1 + n2 ~a2 + n3 ~a3,

in which n1, n2, n3 are integers and ~a1, ~a2, ~a3 are the basis vectors. Some example (lattice with size a):

• SC ⇒ a1 = ax̂, a2 = aŷ, a3 = aẑ;

• FCC ⇒ a1 = a
2 (ẑ + ŷ), a2 = a

2 (x̂+ ẑ), a3 = a
2 (x̂+ ŷ);

• BCC ⇒ a1 = a
2 (ŷ + ẑ − x̂), a2 = a

2 (x̂+ ẑ − ŷ), a3 = a
2 (x̂+ ŷ − ẑ).

Figure 1: More symmetrical choice for primitive vectors for FCC (left) and BCC (right).

A prerogative of the Bravais lattices is that each of their points is identical from wherever they are observed
(for example the honeycomb is not a Bravais lattice).

Figure 2: Honeycomb, it is not a Bravais lattice because the P point is not equivalent to the R point.

The simplest crystal is a crystal with only one kind of atom (or molecule or other) in which a Bravais
lattice is sufficient for describe the system. A more complex crystal is a crystal with different kinds of atoms
(or molecules or other) that needs a Bravais lattice with a basis. A basis can be constructed starting from
the displacement of the different atoms that form the crystal; for example two atom displaced of a

2 along the
diagonal of the cube can be described with two vectors that form the basis ~d0 = (0, 0, 0); ~d1 = a( 1

2 ,
1
2 ,

1
2 ).

1Auguste Bravais was a French physicist known for his work in crystallography and the conception of Bravais lattices
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The basis means that at each point of the basis I have to construct the associated Bravais lattice in order to
have more interpenetrated lattice that correctly describes the solid under exam. We define unit (or primitive)
cell a cell with one reticular site and conventional cell, a cell with n reticular sites. The volume of the two cells
is related by

Vuni =
Vcon
n

.

The unit cell is the smallest mineral’s unit that still has the characteristic symmetry properties of the same
mineral. We can always choose a cell that has the fully symmetries of the system and also one reticular site,
this cell is called Wigner-Seitz cell.
Every real lattice (BL) have a correspondence in Fourier space, a reciprocal lattice (RL). Consider a plane wave
with the same periodicity of the BL

ei
~K·(~r+~R) = ei

~K·~r ⇒ ei
~K·~R = 1,

so a vector, ~K, belongs to the reciprocal lattice if

ei
~K·~R = 1.

Since ~K has to be of the form ~K = m1b1 +m2b2 +m3b3 where

~b1 = 2π
~a2 × ~a3

~a1 · ( ~a2 × ~a3)
,

~b2 = 2π
~a3 × ~a1

~a1 · ( ~a2 × ~a3)
,

~b3 = 2π
~a1 × ~a2

~a1 · ( ~a2 × ~a3)
,

the condition ei ~K·~R = 1 became (noting that aibj = 2πδij)

ei2π(m1n1+m2n2+m3n3) = 1⇒ m1, m2, m3 are integers,

so the RL is a BL. It’s obvious that the reciprocal lattice of the reciprocal lattice is the starting real lattice
(because if we do two times Fourier transform we obtain the starting function). The Wigner-Seitz cell of the
reciprocal lattice is called first Brillouin2 zone (FBZ). Some examples of reciprocal lattice (real lattice with size
a):

• SC ⇒ SC (size 2π
a ),

• FCC ⇒ BCC (size 4π
a ),

• BCC ⇒ FCC (size 4π
a ).

The volume of the BL and the RL are related, in fact

VRL =
(2π)3

VBL
.

We define the lattice plane as a plane that connects an infinity number of reticular sites and a family of reticular
planes as a set of parallel planes whose distance from each other is d. An important theorem says that for each
family of lattice planes there exists a set of vectors of the reciprocal lattice perpendicular to the family of planes
and the shortest has modulo K = 2π

d . Since a reciprocal lattice vector is of the form ~K = h~b1 + m~b2 + l ~b3,
we can use the three coefficients to classify the lattice planes, these coefficients are called Miller3 indices so the
Miller indices are three integers co-prime numbers (h,m, l). In general given the RL’s primitive vectors we can
write ~K = h~b1 +m~b2 + l ~b3 and so

|K| =
√
h2|b1|2 +m2|b2|2 + l2|b3|2 + 2hm~b1 · ~b2 + 2hl~b1 · ~b3 + 2ml~b2 · ~b3,

using the above formula we can collect, using Miller indices, the K vectors based on their length. For a
orthogonal RL’s primitive vectors we have

|K| =
√
h2|b1|2 +m2|b2|2 + l2|b3|2,

2Léon Brillouin was a French physicist. He made contributions to quantum mechanics, radio wave propagation in the atmosphere,
solid state physics, and information theory.

3William Hallowes Miller was a Welsh mineralogist and laid the foundations of modern crystallography.

3



which is simpler. In the case of cubic lattice (SC, FCC, BCC) (more generally for lattice that have orthogonal
primitive vectors) we can use the Miller indices in a simple way (h,m, l) to collect the lattice planes. We know
that between lattice planes and lattice vectors a one-to-one relationship exists. We know that

K =
2πn

d
=

2πn

a

√
h2 +m2 + l2 ⇒ d =

a√
h2 +m2 + l2

.

where d is the distance between two lattice planes of the same family.

• SC ⇒ h,m, l any integer number,

• FCC ⇒ h+m+ l even number,

• BCC ⇒ h,m, l all odd or all even.

(the lattices in the list are reciprocal lattices). Thanks to the ratio between the increasing length K vectors we
can understand if the RL is a SC or a FCC or a BCC or other type of lattices; we report some examples:

• SC ⇒ K1

K1
= 1.00, K2

K1
=
√

2 = 1.41, K3

K1
=
√

3 = 1.71, K4

K1
= 2.00, K5

K1
=
√

5 = 2.23,

• BCC ⇒ K1

K1
= 1.00, K2

K1
= 2√

3
= 1.16, K3

K1
= 2
√

2√
3

= 1.63, K4

K1
=
√

11√
3

= 1.92,

• FCC ⇒ K1

K1
= 1.00, K2

K1
=
√

2 = 1.41, K3

K1
=
√

3 = 1.71, K4

K1
= 2.00, K5

K1
=
√

6 = 2.45.

So when we measure the K, for example with the DS method (see below), through the sequenced ratios we are
able to understand what lattice it is.

1.2 Bragg’s and Von Laue’s formulation of X-rays scattering
Hitting a crystal with X-rays (the range of wavelenght comparable with the characteristic distance in a crystal,
order 10−10m ≈ 104eV ) there are some elastic scattering between the X-rays and the atoms sitting in the
reticular sites. This scattering can be described in two formulation. To study X-rays scattering of a crystal is
fundamental because the bright points that are produced by scattering give us important information about
the reciprocal lattice of the system and consequently on the real lattice of the crystal.

1.2.1 Bragg’s formulation

In the Bragg’s formulation4 the scattering is due to lattice planes that work like mirrors; in order to see
something it’s necessary that two rays interact constructively and that the difference of path of two rays must
be an integer number of wavelenght

∆l = 2dsin(θ) = nλ,

n is called reflection index. This formulation doesn’t explain why the lattice planes work like mirrors and so
it’s not the better formulation to understand the reason why X-rays are scattered.

Figure 3: Geometric construction for Bragg scattering.

4This formulation was investigated by William Henry Bragg and his son William Lawrence Bragg. They were both physicist
and both won the Nobel prize in 1915.
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1.2.2 Von Laue’s formulation

Figure 4: Geometric construction for Von Laue scattering. Note that the vector ~d is a Bravais lattice vector, so ~d = ~R

In Von Laue’s formulation5 the starting point is that the process is elastic and in each lattice site there is an
atom that is able to absorb the radiation that hits the system and reemits isotropically. For the two rays to
constructively interfere, their optical path difference must be an integer multiple of wavelengths, so from the
figure,

∆l = Rcos(θ) +Rcos(θ′) = ~R · (n̂− n̂′) = mλ⇒ ~R · (~k − ~k′) = 2πm,

in the last passage we have multiply by 2π
λ , in which λ is the wavelenght of the X-ray. The above equation can

be rewrite
e
~R·(~k−~k′) = 1,

so the condition in Von Laue formulation is that the difference between the wavenumber of incoming ray and
the wavenumber of outgoing rays is a reciprocal lattice vector

~k − ~k′ = ~K.

By rearranging the above equation we have that (remember that the process is elastic, so (k′)2 = (k)2)

~k′ = ~k − ~K ⇒ (k′)2 = (k)2 + (K)2 − 2 ~K · ~k ⇒ (K)2 = 2 ~K · ~k ⇒ ~k · K̂ =
K

2
,

so the projection of the incoming wave vector along the direction of a reciprocal lattice vector must be equal to
half of the reciprocal lattice vector.

1.2.3 Equivalence of the Bragg’s and Von Laue’s formulations

Consider the construction

Figure 5: Geometric construction for the equivalence between Bragg’s and Von Laue’s formulation.

5Max Von Laue was a German physicist who received the Nobel Prize in Physics in 1914 for his discovery of the diffraction of
X-rays by crystals.
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From the figure we have that
K = 2ksin(θ),

the vector ~K it will not be the shortest but will generally be an integer multiple of the shortest K = 2πn
d and

k = 2π
λ , so

2πn

d
= 2ksin(θ)⇒ 2πn

d
= 2

2π

λ
sin(θ)⇒ 2dsin(θ) = nλ.

The two formulation are equivalence and so a Von Laue’s diffraction peak corresponds to a Bragg’s reflection peak
and the reflection index is nothing but the ratio between the vector of the reciprocal lattice, which corresponds
to the difference between the incoming and outgoing wave vector, and the shortest reciprocal lattice vector.

1.3 X-rays scattering experimental methods without basis
An interesting construction is the Ewald sphere; it’s a sphere centered on the reticular site hitted by the X-rays
radiation and with a radius equal to the amplitude of the propagation vector of the radiation. If a reticular site
lies on the surface of these sphere we see a bright spot corresponding at this reticular site.
There are differents methods to do an experiment with X-rays that help us to understand how is done the
reciprocal lattice of a crystal; the most important is the Debye-Sherrer method.

1.3.1 Von Laue method

In Von Laue method we change the wavelenght and therefore the propagation vector; the Ewald sphere changes
its radius with continuity and we see a bright spot for each reticular site touched by the surface of the sphere.

1.3.2 Rotating crystal method

In this method we rotate the crystal around a fixed axis; rotating the crystal we move the reticular sites and
when one of them intersect the surface of the Ewald sphere we see a bright spot.

1.3.3 Debye-Scherrer method

In Debye6-Sherrer7 (DS) method we use a poly-crystal or powders; this bring to have a lot of crystal random
oriented. Hitting the system with a fixed wavelenght radiation, λ , we obtain an average value of K (we lose
the information on the direction of K but the magnitude is sufficient to understand how the reciprocal lattice
of the system is done). The value of K is related to the scattering angles throughout the relation

K = 2ksin

(
φ

2

)
= 2ksin(θ),

in which k = 2π
λ is the wave vector of ingoing ray and φ = 2θ is the scattering angles measured with respect to

the incident beam direction. We note that K increases with increasing φ = 2θ.
We report the first 10 K, sorted according to their length and using Miller indexes (in DS method a set with

different indexes but with the same
√
h2 +m2 + l2 give us only one scattering peak) in the case of SC, FCC

and BCC

SC BCC FCC
100 111 110
110 200 200
111 220 211
200 311 220
210 222 301
211 400 222
220 331 321

221, 300 420 400
301 422 411, 330
311 333, 511 420

Table 1: The first 10 triads of Miller indices for RL are reported in order of length of K. (the lattices in the
table are reciprocal lattices)

6Peter Debye was a Dutch-American physicist and physical chemist, and Nobel laureate in Chemistry. He is most known for
the Debye model that we will study later.

7Paul Scherrer was a Swiss physicist.

6



1.4 X-rays scattering experimental methods with basis
In case the lattice shows a basis we have to study two different cases:

• basis with n equal kind of atoms or molecules,

• basis with n difference kind of atoms or molecules,

we define the structure factor as

S ~K =

n∑
j=1

fj( ~K)ei
~K· ~dj ,

the functions fj( ~K) are the form factor and depend only by the electron distribution of the atom or the molecule.
We are adding several plane waves so we can have:

• S ~K 6= 0⇒ we see a bright point,

• S ~K = 0⇒ we see a missing point.

The case of missing point is due to the interference between scattered waves by different reticular sites. In case
of basis with n equal kind of atoms or molecules we have that all the form factor are the same so that it is
factorized and it is possible that the sum is zero. In the case with n different kind of atoms or molecules we
have that the form factor are different one to each other and so it’s very unlikely that the sum is zero. So in
the first case we can have missing points, while in the second is very unlikely. In order to calculate it, we can
put ~K = h~b1 + m~b2 + l ~b3 specialized to the case examinated, we calculate the scalar product and then try to
understand for which (m1,m2,m3) the structure factor is zero. Generally the first base vector is always taken
to be null.
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2 Lattice vibrations and phonons
Now we’ll study the lattice vibrations, previously from the point of view of classical mechanics and then from
the quantum point of view.

2.1 Normal modes development
We now studying the lattice vibrations; the simplest model is those one with mass and spring with the har-
monic approximation so we develop the potential until the second order with Taylor, we use also the adiabatic
approximation to study only the ions motion. The electron typical velocity is order 106m

s while the ions typical
velocity is order 103m

s , so they are stationary for the electrons and we can study their motion independently of
the motion of the electrons. An ideal crystal is created by the infinite repetition, without overlapping or holes,
of a fundamental unit. A real crystal has a finite volume and is delimited by its surface. The presence of a
free surface violates the invariance by translating the crystal. However, it is clear that this cannot change the
physical properties of a macroscopic crystal significantly. It is therefore customary to adopt, in the description
of the real crystals, fictitious boundary conditions that restore the translational invariance. These conditions
are the periodic conditions of Born-von Karman. The idea is to develop the problem in the regime of small
oscillations since for Lindemann’s criterion if the oscillations were comparable with the lattice constant (spacing
between one reticular site and another) then the crystal would fall apart.

The classic Lagrangian of small oscillations in the harmonic approximation is

L =
1

2

∑
n

∑
l

∑
α

ml(u̇
α
n,l)

2 − 1

2

∑
n,n′

∑
l,l′

∑
α,α′

Kα,α′

l,l′ (n, n′)uαn,lu
α′

n′,l′

where the sum on n (and n′) runs on the sites of the Bravais lattice identified by the vectors position ~Rn, the
sum on l(e l′ ) runs on the vectors of the base that identify the position of the different atoms within each
elementary cell, ~rl, so that the equilibrium position of an atom is identified by the vector ~Rn+~rl and the vector
~un,l indicates the deviation from the equilibrium position of the atom and the index α indicates the cartesian
components of the vector. The constant term in the harmonic development of the Lagrangian has been set
to be null and the matrix Kα,α′

l,l′ (n, n′) is the coupling between all the atoms. So the position of each atom is
specified by

~xn,l = ~Rn + ~rl + ~un,l(t).

The matrix Kα,α′

l,l′ (n, n′) has same important symmetries

• Sufficiently good potential ⇒ independence of order of differenzation ⇒ Kα,α′

l,l′ (n, n′) = Kα′,α
l′,l (n′, n);

• Inversion symmetry of BL ⇒ Kα,α′

l,l′ (n, n′) = Kα,α′

l′,l (n′, n),

this two symmetry allow us to say that the matrix Kα,α′

l,l′ (n, n′) is symmetric and is also important remember
that the coupling only depends on the relative distance of two lattice sites. The Lagrangian above gives rise
to an unsolvable coupled problem DNp × DNp ( DNp is equal to the number of degrees of freedom of the
system) in which D is the dimension of the system, N is the number of elementary cells in the crystal and p is
the number of atoms contained in an elementary cell. The solution is easier if we pass into Fourier transform ,
and given that the matrix Kα,α′

l,l′ (n, n′) is real its Fourier transform is such that

K̃α,α′

l,l′ (−~k) = K̃α′,α
l′,l (~k) =

[
K̃α′,α
l′,l (~k)

]∗
,

so it’s hermitian and so its eigenvalues are all real; the original problem is reduced to a more easily algebraic
problem Dp×Dp. Doing this we are looking for a plane waves solutions that are superposition of the normal
modes solutions

uαn,l =
∑
~k

Aα~k,le
i[ωs(~k)t−~k(̇~Rn+~rl),

to find the normal modes solutions we have to impose that the matrix associated with the algebraic system
Dp×Dp has zero determinmant or, equivalently, solve the eigenvalue problem

det(Kα,α′

l,l′ (n, n′)− ω2
sml) = 0

Being a Dp×Dp problem we have to find Dp eigenvalues for each fixed allowed ~k, that we call ωs(~k), and since
the allowed wavevectors ~k are N (adopting Born-Von Karman boundary conditions) we find all the degrees
of freedom that we need, DNp. In a D-dimensional crystal with periodic boundary conditions, the normal
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modes are characterized by the wavevector ~k and by the branch index s which assumes Dp values. Among the
different branches of the oscillation spectrum there are D that in the limit of large wavelength correspond to
ordinary elastic waves, whose frequency drop to zero linearly with ~k → 0 and are called acoustic modes while
the remaining D(p−1) modes are called optical modes because they interact whit the EM field and characterize
the optical properties of the solid.

Figure 6: Dispersion relations in che case of D = 3 and p = 2.

To recap, to solve equations of motion deriving from the previous lagrangian we move on Fourier space and
so we want to find a plane wave solutions (that are superposition of the normal mode solutions). Using the
ansatz we obtain an homogeneous system that has non trivial solution only if the determinant of the coefficient
matrix is zero. Imposing that the determinant of coefficient matrix is zero, we obtain the relationship between
the proper frequencies, ωs, and the propagation vector ~k; the number of proper frequencies must be equal to the
number of degrees of freedom of the system. The degrees of freedom depend on the dimension of the system and
also from the number of different kind of atoms (or molecules) that build the system, DNp (D is the dimension
of the system, p is the number of atoms per fundamental cell and N is the number of fundamental cells). D of
the normal modes are acoustic (goes to zero linearly whit ~k → 0) while the remaining are optical.

To solve exercise in which the dispersion relationship is required we write the equations of motion ~F = ma
for every atom or molecule in the lattice. For example, we consider one dimension for the sake of simplicity, let
us consider the system in figure below.

Figure 7: Example of coupled system we are considering.

We have four springs with the same elastic constant and three masses dubbed, respectively, a, b, c; the
equations of motion are

mẍa = −kxa + k(xb − xa);

mẍb = −k(xb − xa) + k(xc − xb);
mẍc = −kxc − k(xc − xb);

where ẍi are the displacement vectors of the three masses. Note that the mass attached to springs not anchored
fells only force due to relative displacement since walls are considered with infinite mass.

Once we have a system of equations of motion, we write a solution of the form un = Aei(ωt−qna); where
u is the displacement respect the equilibrium position. In the case of more kind of atoms (or molecules) we
have different displacement vn and, theoretically, we should have an extra displacement (due to the different
position of the basis) that is reabsorbed in the definition of the amplitude constant of the plane wave solution,
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so vn = Bei(ωt−qna). To find the sound velocity it’s necessary to approximate the dispersion relation of the
sound modes (the relation between the frequency and the propagation vector, so the solved determinant of
the coefficient matrix) for small q with Taylor development. To do this is important remind those Taylor
approximations:

• sin2(x) ≈ x2;

•
√

1− x ≈ 1− x
2 ;

• cos2(x) ≈ (1− x2

2 )2.

Is important also remember this trigonometric relation

1− cos(x) = 2sin2

(
x

2

)
.

Developing dispersion relation, we find a linear relationship between the frequencies and q, and the coefficient
is the sound velocity. This treatment is a classical treatment based on the normal modes development we now
move to quantize the elastic field of the solid and what we find is the phonons, the quanta of elastic field.
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2.2 Phonons and specific heat
Our goal is to find the correct specific heat of a solid; we know experimentally the Dulong-Petit (DP) law (limit
for T →∞) for which the specific heat goes to

cv,DP =
DNpkb
V

=
Dpkb
VN

= nDpkb

where D is the dimension of the system, Dp is the number of branches (depending on the number of atom or
molecule basis), N is the number of cells, V is the total volume and VN is the volume of one cell; for example

• D = 1, 1− base system, VN = a⇒ cv,DP = kb
a ;

• D = 1, 2− basis system, VN = a⇒ cv,DP = 2kb
a ;

• D = 1, 3− basis system, VN = a⇒ cv,DP = 3kb
a ;

• D = 2, 1− base system, VN = a2 ⇒ cv,DP = 2kb
a2 ;

• D = 2, 2− basis system, VN = ab⇒ cv,DP = 4kb
ab ;

• D = 3, 1− basis system, VN = a3 ⇒ cv,DP = 3kb
a3 .

On the other hand, in the limit T → 0 the specific heat goes to zero as TD.
To find the specific heat we start from the internal energy for unit volume u; we can treat the system of phonons
like a non interacting bosons gas, and so cv = ∂u

∂T . The internal energy for unit volume can be written as

u =
1

V

∑
q

∑
s

~ωs(q)
[

1

eβ~ωs(q) − 1
+

1

2

]
,

where q is the propagation vector (or the reciprocal lattice vector) and s is the branch index. The fact that the
occupation number is given by the Bose statistic is due to the fact that the phonons are the quanta of elastic
vibration, and since the elastic deformation is additive nothing prevents you from creating more phonons that
deform in the same way and therefore with the same energy, in addition, the chemical potential is zero because
the number of phonons in the system is not conserved.

We can transform the sum over ~q in an integral

1

V

∑
q

→
∫
dqxdqydqz

1

(2π)3
,

we have, in the end (and generalizing to arbitrary dimensions)

u =
∑
s

∫
FBZ

dDq

(2π)D
~ωs(q)

[
1

eβ~ωs(q) − 1
+

1

2

]
.

The specific heat is

cv =
∂

∂T

∑
s

∫
FBZ

dDq

(2π)D
~ωs(q)

[
1

eβ~ωs(q) − 1
+

1

2

]
=

∂

∂T

∑
s

∫
FBZ

dDq

(2π)D
~ωs(q)

[
1

eβ~ωs(q) − 1

]
.

Now we want to semplify our life so we discuss two models that describe the specific heat.

2.2.1 Einstein model

In Einstein model the frequencies ωs(q) are replaced with an average value ωE ; so (remembering that s take all
the Dp values)

cv =
∂

∂T

1

(2π)D
Dp

[
~ωE

eβ~ωE − 1

] ∫
FBZ

dDq =
1

(2π)D
Dp

[
(~ωE)2e

~ωE
kbT

kbT 2
(
e

~ωE
kbT − 1

)2
] ∫

FBZ

dDq

Einstein model is a good approximation only for the optical modes (or branches). To understand if a given
temperature is small or big in the Einstein model we have to compare the given temperature with the Einstein
temperature

TE =
~ωE
kb
≈ O(102÷3K),

in the two limits we can approximate the exponential and so

11



• T >> TE ⇒ eβ~ωE − 1 ≈ β~ωE ⇒ cv = Dp
(2π)D

(2π)D

aD
(~ωE)2

kbT 2(β~ωE)2 = Dp
aD
kb = cv,DP (cubic lattice case) ;

• T << TE ⇒ eβ~ωE − 1 ≈ eβ~ωE ⇒ cv ∼ e−β~ωE .

The Einstein model is wrong at low temperature.

2.2.2 Debye model

In Debye model we consider for the acoustic modes ω(s)
a = c

(s)
S q, where c(s)S is the sound velocity in the crystal

of the s-th acoustic branch, and we perform the integration on an ipersphere with radius qd (Debye radius),

cv =
∂

∂T

∑
s

∫ qd

0

∫
qD−1dqdΩ

(2π)D
~c(s)S q

eβ~c
(s)
S q − 1

,

where the sum over s now is the sum on acoustic branches only. The value of Debye radius is found by the
request that the ipersphere has the same volume of the first Brilluin zone; they are explained in the case of
cubic first Brilluin zone:

• D = 3⇒ 4π
3 q

3
d = VFBZ = (2π)3

a3 ⇒ qd = 1
a (6π2)

1
3 ;

• D = 2⇒ πq2
d = VFBZ = (2π)2

a2 ⇒ qd = 2
√
π
a ;

• D = 1⇒ 2qd = VFBZ = 2π
a ⇒ qd = π

a .

Using the change of variable x = β~c(s)S q (at fixed Ω) we obtain

cv =
∂

∂T

∑
s

1

(2π)DβD+1~D(c
(s)
S )D

∫ β~c(s)S qd

0

xD

ex − 1
dxdΩ,

defining the Debye average sound velocity 1
〈cd〉D = 1

D

Γ(D2 )

2π
D
2

∑
s

∫
dΩ

(c
(s)
S )D

, we have

cv =
∂

∂T

D

(2π)DβD+1~D〈cd〉D
2π

D
2

Γ(D2 )

∫ β~〈cd〉qd

0

xD

ex − 1
dx,

where Θ(β~〈cd〉qd)D :=
∫ β~〈cd〉qd

0
xD

ex−1dx is the generalized Debye function. We define the Debye temperature
as

Td =
~ωd
kb

=
~〈cd〉qd
kb

≈ O(102÷3K),

and we have the two limits

• T >> Td ⇒ Θ(β~〈cd〉qd)D → (β~〈cd〉qd)D

D ⇒ cv → cv,DP ;

• T << Td ⇒ Θ(β~〈cd〉qd)D → Γ(D + 1)ζ(D + 1)⇒ cv ∼ TD.

Now we specialized our results at the physical interesting cases, so for D = 1, D = 2 and D = 3:

• D = 1⇒ cv = ∂
∂T

1
(2π)β2~〈cd〉

2π
1
2

Γ( 1
2 )

∫ β~〈cd〉qd
0

x
ex−1dx = ∂

∂T
1

πβ2~〈cd〉
∫ β~〈cd〉qd

0
x

ex−1dx

• D = 2⇒ cv = ∂
∂T

2
(2π)2β3~2〈cd〉2

2π
2
2

Γ( 2
2 )

∫ β~〈cd〉qd
0

x2

ex−1dx = ∂
∂T

1
πβ3~2〈cd〉2

∫ β~〈cd〉qd
0

x2

ex−1dx

• D = 3⇒ cv = ∂
∂T

3
(2π)3β4~3〈cd〉3

2π
3
2

Γ( 3
2 )

∫ β~〈cd〉qd
0

x3

ex−1dx = ∂
∂T

3
2π2β4~3〈cd〉3

∫ β~〈cd〉qd
0

x3

ex−1dx

In general we adopt both models, Einstein model for optical branches and Debye model for acoustic branches;
so the internal energy (and the specific heat) is the sum of contributions due to both models.
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3 Band structure of solids
In this section we’ll study the band structure of solids, it explains why some materials are insulators and other
conductors and also the electronic properties of solids. An insulator is a material in which the bands are filled
while a metal (a conducting material) has no all bands filled. To construct the band structure we use the
Weak potential approximation and the tight binding method. Remember that in anisotropic system the current
density is

Ji = σijEj

in which σij = 1
ρij

= qnµij = q2nτ
mij

(µij = qτ
mij

is the mobility and mij is the mass tensor). The density of
electrons is n = Ne

Vuni
in which Ne is the number of electrons with which each atom contributes and Vuni is the

volume of the unit cell.

3.1 Bloch theorem
The starting point is the Bloch8 theorem, a general result for Schrödinger equation with a periodic potential.
The theorem states that the solution of this type of Schrödinger equation, and consequently the eigenstates of
one-electron periodic hamiltonian (we use the independent electron approximation), have the two equivalent
form

ψ(~r)n,~k = ei
~k·~ru(~r)n,~k

ψ(~r + ~R)n,~k = ei
~k·~Rψ(~r)n,~k

in which n is the band index (like the n in the case of hydrogen atom takes all the positive integers numbers), the
quantum number ~k is the quasi-momentum (or crystal momentum and is the quantum number characteristic
of the translational operator of the solids) and ~R is a Bravais lattice vector. The important thing is that the
function u(~r)n,~k has the same periodicity of the potential of the system (obviously the periodicity is the Bravais
lattice vector). Using the Bloch form to simplify the initial general one electron Schrödinger equation we obtain
a secular equation for the function u(~r)n,~k with the boundary condition (dictated by the periodicity):

H~ku(~r)~k = E~ku(~r)~k,

u(~r)~k = u(~r + ~R)~k.

This equation has, in general, an infinite number of solutions for every fixed ~k; this solutions are labelled by the
band index, n, and they have a discretely spaced eigenvalues (but they are so many that the band looks like a
continuous). So for every n the eigenvalues and the eigenstates are function of the quasi-momentum ~k and we
call the set of functions En,~k band structure.

3.1.1 Proof of Bloch theorem

Consider the operator that translates by an amount equal to a vector of the Bravais lattice considered, T (~R).
This operator commute with the one-electron periodic hamiltonian, H = − ~2

2m∇
2 +U(~r), because the potential

part is periodic in the Bravais lattice (U(~r+ ~R) = U(~r)) while the kinetic term is a larger set that also includes
the operator T (~R). So is possible diagonalize simultaneously H and T (~R)

Hψ = Eψ,

T (~R)ψ = c(~R)ψ.

Since T (~R) is a translation operator its eigenvalues are of the form

c(~R) = e
i~R·~p
~ = ei

~R·~k,

in which ~k = ~p
~ , it’s important to emphasize that ~p it is not the momentum because it only generates a restricted

set of translations and is called quasi-momentum. So we can write

T (~R)ψ(~r) = ψ(~r + ~R) = c(~R)ψ(~r) = ei
~k·~Rψ(~r)

QED

8Felix Bloch was a Swiss-American physicist and Nobel physics laureate in 1952.
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3.2 Weak potential approximation
We rewrite the general one electron Schrödinger equation as(

~2

2m
(~k − ~K)2 − E

)
c~k− ~K +

∑
~K′

U ~K,− ~Kc~k− ~K′ = 0,

the above equations are nothing but the original Schrödinger equation in momentum space simplified by the
fact that the Fourier components of the potential must be only plane waves with an impulse equal to a vector
of the reciprocal lattice. The idea is to use perturbation theory applied to a free electron system in which is
present a weak periodic external potential due to the ions of the solids.

At this point we consider two cases, the first one is the case of some free electron levels that are non
degenerate compared with the typical magnitude of the Fourier coefficients of the external potential and the
second one is the case of some free electron levels that are degenerate compared with the typical magnitude
of the Fourier coefficients of the external potential. In the first case we can use non degenerate perturbation
theory stopping development on the first non-trivial order in external potential; fixed one ~k and considered the
lattice vector ~K ′ the correction is

E = E0
~k− ~K′ +

∑
~K

|U ~K− ~K′ |
2

E0
~k− ~K′

− E0
~k− ~K

.

Energy is similar to that of a free electron but corrected to a quantity of O(U2), the first order is just a
trivial shift in energy so we can "neglect" it. In the second case we must use degenerate perturbation theory
and we can stop the development at first order in the external potential; fixed one ~k and a set of i = 1, ...,m
reciprocal lattice vector in which the energy is degenerate (in the sense specified above) the correction is

E − E0
~k− ~Ki

c~k− ~Ki =

m∑
j=1

U ~Kj− ~Kic~k− ~Kj .

The above equations are the general equation for a system of m quantum levels. If we use these equations in
the case of two degenerate free electron levels we obtain that the two levels are spaced by an amount equal
to 2|U ~K2− ~K1

|, so near the boundaries of the first Brillouin zone, due to the ions periodic potential, GAPs are
open. In fact taken two free electron levels we have, using the above equation and remembering that we choose
U~0 = 0,

(E − E0
~k− ~K1

)c~k− ~K1
= U ~K2− ~K1

c~k− ~K2
⇒ (E − E0

~q )c~q = U ~Kc~q− ~K ,

(E − E0
~k− ~K2

)c~k− ~K2
= U ~K1− ~K1

c~k− ~K1
⇒ (E − E0

~q− ~K)c~q− ~K = U− ~Kc~q,

in which we called ~q = ~k − ~K1 and ~K = ~K2 − ~K1. The above system is a homogeneous one so we must impose
that the determinant of the coefficient matrix is zero (remembering that U− ~K = U∗~K because the potential is
real)

(E − E0
~q )(E − E0

~q− ~K) = |U ~K |
2 ⇒ E2 − EE0

~q− ~K − E
0
~qE + E0

~qE
0
~q− ~K − |U ~K |

2 = 0

⇒ E± =
(E0

~q + E0
~q− ~K)±

√
(E0

~q − E0
~q− ~K

)2 + 4|U ~K |2

2
,

when the two levels are degenerate in the classical sense of the term (that is, in case that the levels are on the
boundary of the FBZ) we obtain

E± = E0
~q ± |U ~K | ⇒ EGAP = E+ − E− = 2|U ~K |

that is the GAP.
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Figure 8: Example of GAP for two degenerate free electron levels.

3.3 Tight Binding
In the tight binding method we consider the hamiltonian in the form

H = Hatomic + ∆U(~r),

so we imagine that the total hamiltonian is more or less like the atomic hamiltonian of the constituent atoms
of the solid; when the electrons are very close to the nuclei the levels are very close to the atomic levels, when
the electrons are quite far from the nuclei the levels are appreciably different from atomic levels. Understood
this, we looking for an eigenstates of the total hamiltonian of the form of a superposition of atomic orbitals that
respect the Bloch form

ψ(~r)n,~k =
∑
~R

ei
~k·~Rψ(~r − ~R)n,~k.

Now, any Bloch function can be written as

ψ(~r)n,~k =
∑
~R

ei
~k·~Rφ(~r − ~R)n,~k,

in which the function φ are known as Wannier functions (the proof is based on the Fourier expansion of the
Bloch function ψ in plane waves with wave vectors in the real lattice) and the Wannier functions can be chosen
as LCAO functions

φ(~r − ~R) =
∑
j

bjψj(~r − ~R),

in which, now, ψi are atomic eigenfunctions.
Taking the Schrödinger equation for the total hamiltonian H and using the above development for the

eigenfunctions we obtein (
Hatomic + ∆U(~r)− E~k

)∑
~R

ei
~k·~R
∑
j

bjψj(~r − ~R) = 0,

now, we multiply scalarly for a generic atomic eigenfunction ψn(~r)∫
ψ∗n(~r)

(
Hatomic + ∆U(~r)− E~k

)∑
~R

ei
~k·~R
∑
j

bjψj(~r − ~R)d~r =

=

∫
ψ∗n(~r)

(
En + ∆U(~r)− E~k

)∑
~R

ei
~k·~R
∑
j

bjψj(~r − ~R)d~r = 0⇒

⇒
∫
ψ∗n(~r)

(
En + ∆U(~r)− E~k

)(∑
j

bjψj(~r) +
∑
~R 6=0

ei
~k·~R
∑
j

bjψj(~r − ~R)

)
d~r = 0⇒

⇒ (En − E~k)bn +
∑
j

bj

∫
ψ∗n(~r)∆U(~r)ψj(~r)d~r+

+
∑
~R 6=0

ei
~k·~R
∑
j

bj

(
(En − E~k)

∫
ψ∗n(~r)ψj(~r − ~R)d~r +

∫
ψ∗n(~r)∆U(~r)ψj(~r − ~R)d~r

)
= 0

These are the equations that determinate the band structure, is easy to see that the problem easily becomes
very complicated. In the above equations appear three integrals that we rename:
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• βj = −
∫
ψ∗n(~r)∆U(~r)ψj(~r)d~r ⇒ Shift integral;

• αj =
∫
ψ∗n(~r)ψj(~r − ~R)d~r ⇒ overlap integral;

• γj = −
∫
ψ∗n(~r)∆U(~r)ψj(~r − ~R)d~r ⇒ transfer integral.

The shift integral is just a number while the overlap and the transfer integrals are functions of the real lattice
vector ~R; all of them are small quantity compared with the typical size of the atomic levels so the band structure
can be seen as small deformation of an atomic levels.

We can rewrite the tight binding equations as

(En − E~k)bn −
∑
j

bjβj +
∑
~R 6=0

ei
~k·~R
∑
j

bj

(
(En − E~k)αj − γj

)
= 0,

depending on the type of orbitals that are carried by the solid atoms we obtain a different set of equations; for
example for the p orbitals (that are triply degenerate) we obtain a 3×3 homogeneous system and its eigenvalues
are the 3 bands and the solutions of the system are the tree coefficients of the LCAO superposition. We focus
our attention on the case in which each lattice sites host s orbitals; in this case we have

(Es − E~k)bs − bsβs +
∑
~R 6=0

ei
~k·~Rbs

(
(Es − E~k)αs − γs

)
= 0⇒

⇒
(

(Es − E~k)− βs +
∑
~R 6=0

ei
~k·~R
(

(Es − E~k)αs − γs
))

bs = 0⇒

⇒ (Es − E~k)− βs +
∑
~R 6=0

ei
~k·~R
(

(Es − E~k)αs − γs
)

= 0⇒ E~k = Es −
(βs +

∑
~R 6=0 e

i~k·~Rγs)

1 +
∑

~R 6=0 e
i~k·~Rαs

.

If the case under examination (s orbital) the overlap integral is neglectable so

E~k = Es − βs −
∑
~R 6=0

ei
~k·~Rγs.

It is important to underline that even if the orbitals considered are not s type, it is always possible, provided
that an appropriate number of nth-neighbors and an appropriate signs in the transfer integrals are considered,
to write the resulting band as if the orbitals were all s type. So the tight binding is a very powerful method.
We report some trigonometric identities useful in calculations of the bands atructure

cos(a− b) = cos(a)cos(b) + sin(a)sin(b);

cos(a+ b) = cos(a)cos(b)− sin(a)sin(b).

We can expand the band near the stationary point and we can write

E~k = const+
~2

2

∑
i,j

m−1
ij kikj ,

in which m−1
ij is the inverse mass tensor (we treat better this part in the section on the semiclassical theory of

Bloch electrons); so we can expand with Taylor the band and comparing the development with the equation
above we can derive the components of the mass tensor. This derivation of the mass tensor is right if we want,
or to know the tensor at the gamma point, Γ = (kx = 0; ky = 0; kz = 0); in general we have

m−1
ij (~k = P ) =

1

~2

∂2E(~k)

∂ki∂kj

∣∣∣∣
~k=P

.

We can also calculate the velocity of the Bloch electrons

~v =
1

~
∂E(~k)

∂~k
.

We mention the one-dimensional case in which there are two atoms, one of which carries s orbitals and the
other p orbitals; the two bands are (γ is the transer integral between p and s orbitals)

Ekp,ks =
Ep + Es

2
±

√(
Ep + Es

2

)2

+ 4γ2sin2

(
ka

2

)
,
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in the case EGAP = Ep − Es >> γ we can expand the square root, so bands are

Ekp = Ep +
4γ2

Ep − Es
sin2

(
ka

2

)
;

Eks = Es −
4γ2

Ep − Es
sin2

(
ka

2

)
.
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4 Semiclassical theory of Bloch electrons
The semiclassical theory of Bloch electrons is base only on the knowledge of the band structure of the solid.
First we write the electron wave function as Bloch’s eigenfunctions wave packet

ψn(~r, t) =

∫
g(~k′ − ~k)ψn,~k(~r)e−

iEn(~k′)t
~ d~k′,

in which the functions g(~k′ − ~k) weighs the wavevectors that contribute to the wave packet and is picked in ~k.
Since the size of the FBZ is order 1010m−1 we assume that the spread of the wave packet is small compared
with the FBZ size; for the uncertainty principle the size of the distribution in real space is large compared
to the typical scale of the Bravais lattice (order 10−10m). The semiclassical model describes the response of
the electrons to external EM field when this varies slowly on the scale of the Bravais lattice (that is, when its
wavelength is much larger than the typical size of the BL). We note also that the group velocity of the wave
packet is

~vn(~k) =
1

~
∂En(~k)

∂~k
,

for the Ehrenfest theorem this velocity is the mean velocity of Bloch electrons.
The semiclassical model describe the electrons treating classically the EM field and quantistically the matter,

and so, according to

~̇r = ~vn(~k) =
1

~
∂En(~k)

∂~k
;

~~̇k = −e[ ~E(~r, t) +
1

c
~vn(~k)× ~H(~r, t)].

We note, again, that ~~̇k is not the momentum because it varies not under the total external force (we are not
considering the strength exerted by the ions).

We can develop the dispersion relation close to a minimum or a maximum and we have an expansion of the
form (for a minimum) E(~k) = E( ~k0) + A

2 (~k− ~k0)2 in which ~k0 is the singular point and A is the hessian matrix
of E(~k), so that

~v =
1

~
A~k ⇒ ~a =

d~v

dt
=

1

~
A~̇k =

A~F

~2
,

in which ~F is the external force. By comparison we define A = ~2m−1 and so we can write

E~k = Econst +
~2

2

∑
i,j

m−1
ij kikj ,

in which m−1
ij = 1

~2

∂2E(~k)
∂ki∂kj

is known as inverse mass tensor and it determinates the dynamics of the object under
examination. It is always possible to diagonalize the inverse mass tensor (along the crystallographic axes);
the fact that the mass is tensor makes us understand that crystals are highly anisotropic objects and that the
electrons in a crystal (we call them Bloch electrons) are completely different from free electrons.

We also note that if a solid has a filled bands then these are inert from the energy and current point of view,
infact

~j = −en~v(~k) = −2e

∫
full band

d~k

(2π)3

1

~
∂E(~k)

∂~k
= 0;

u = nE(~k) = 2

∫
full band

d~k

(2π)3
E(~k) = 0,

in which n is the density of electrons (the Fermi distribution does not appear because the band is full and
therefore all the levels are occupied). We note that

0 = −2e

∫
zone

d~k

(2π)3

1

~
∂E(~k)

∂~k
= −2e

∫
occupied zone

d~k

(2π)3

1

~
∂E(~k)

∂~k
− 2e

∫
unoccupied zone

d~k

(2π)3

1

~
∂E(~k)

∂~k

⇒ −2e

∫
occupied zone

d~k

(2π)3

1

~
∂E(~k)

∂~k
= 2e

∫
unoccupied zone

d~k

(2π)3

1

~
∂E(~k)

∂~k
,

for which study the zones of the bands occupied by electrons or the zones of the bands not occupied by electrons
(the lack of electrons generates a hole of positive charge) are totally equivalent for the purposes of electronic
properties; the holes picture and the electrons picture are equivalent.
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4.1 Motion in a DC electric field and in uniform magnetic field
In a uniform static electric field the semiclassical equations become

~̇r = ~vn(~k) =
1

~
∂En(~k)

∂~k
;

~~̇k = −e ~E,

and so
~k(t) = ~k(0)− e ~Et

~
;

~̇r = ~vn(~k) = ~vn

(
~k(0)− e ~Et

~

)
.

Since the velocity is a periodic function in the reciprocal lattice it’s a bounded function of time and in same
cases is also oscillatory. This strange behavior (AC current in a DC field) is due to the potential of the ions
which in the semiclassical model is no longer explicit. To see this behavior one electron must travel a distance
in ~k-space larger than the typical FBZ size but even with very intense fields and large relaxation time (the
typical time after which the system returns to equilibrium thanks to collision) the distance that one electron
can covered is small compared with typical FBZ size.

In the case of uniform magnetic field the semiclassical equations are

~̇r = ~vn(~k) =
1

~
∂En(~k)

∂~k
;

~~̇k = −e
c
~vn(~k)× ~H

follows that, since the cross product produce a vector perpendicular to both addends, the external force has
zero component along the magnetic field’s lines and so the component of ~k along the magnetic field’s lines is
a motion constant; moreover, since Lorenz force due to magnetic field do not work, also the energy En(~k) is a
motion constant. The solution of the equation are determinate by those two conservation laws, electrons move
along curves (in general not closed) given by the intersection of surfaces of constant energy (the Fermi surface
for a particular band, remember that the Fermi surface is defined as En(~k) = EF ) and planes perpendicular to
the magnetic field’s lines.

Figure 9: Intersection between Fermi surface and planes perpendicular to the magnetic field’s lines. The orbit is
completely different from the case of electrons in vacuum.
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Consider the case of a closed orbit, the projection of the real space in a plane perpendicular to the magnetic
field’s lines can be found taking the vector product of the second above equation with a magnetic field’s versor

Ĥ × ~~̇k = −e
c
Ĥ × ~̇r × ~H,

remembering that a× b× c = b(a · c)− c(a · b) we have

Ĥ × ~̇k = − e

c~
[
~̇r(Ĥ · ~H)− ~H(Ĥ · ~̇r)

]
= −eH

c~
[
~̇r − Ĥ(Ĥ · ~̇r)

]
= −eH

c~
~̇r⊥

in which ~̇r⊥ is the component perpendicular to the magnetic field. Integrating the above equation we obtain

~r⊥(t)− ~r⊥(0) = − c~
He

Ĥ × (~k(t)− ~k(0)),

since the vector ~k(t) − ~k(0) is always (at each time) perpendicular to magnetic field’s lines (it’s due to the
conservation law previously exposed), the vector product rotate by 90◦ the orbit in ~k-space around the magnetic
field versor. In the end, the orbit in real space is the orbit in ~k-space rotate by 90◦ aound the magnetic field
versor and scaled by a factor ~c

eH . We note also that from the first of the semiclassical equations in the case of
motion in uniform magnetic field we can derive the component of the real orbit along the axis parallel to the
magnetic field’s lines (for example along the z axis)

z(t) = z(0) +

∫ t

0

vz(t)dt = z(0) +

∫ t

0

1

~
∂En(~k)

∂kz
dt,

and the motion can be not uniform. We conclude that the motion in a uniform magnetic field of a Bloch
electrons is completely different from the case of electrons in vacuum subject to uniform magnetic field.

4.2 Specific heat of Bloch electrons in solid
In this section we will introduce the Sommerfeld expansion and use it to calculate thermodynamic quantities
of interest, like the specific heat. First, we define again the density of states (DOS). A lot of the quantities of
interest are of the form

Q = g
∑
n,~k

Qn(~k)

in the limit of large crystal the allowed ~k are very dense and the sum can be replaced by an integral

q = lim
V→∞

Q

V
= g

∑
n

∫
FBZ

d~k

(2π)3
Qn(~k)

in which g is the spin degeneracy (for electrons g = 2). This type of integral can be rewrite in the form

q =

∫
Q(E)G(E)dE,

on condition you define the DOS in the form (comparing with the second equation)

G(E) =
∑
n

Gn(E) =
∑
n

∫
FBZ

d~k

(4π3)
δ(E − En(~k))

DOS counts how many states are there at a certain energy E.

4.2.1 Sommerfield expantion

The typical integral which allows us to calculate thermodynamic quantities of interest is of the form

q =

∫ ∞
−∞

dEH(E)f(E),

in which the function f(E) is the Fermi distibution

f(E) =
1

eβ(E−µ) + 1
,
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and H(E) is a funtion that vanish in the limit E → −∞. Defining the function

R(E) =

∫ E

−∞
H(z)dz

we can rewrite the first integral in the form

q =

∫ ∞
−∞

f(E)dR(E)⇒ q = R(E)f(E)

∣∣∣∣∞
−∞

+

∫ ∞
−∞

R(E)

(
− df(E)

dE

)
dE =

∫ ∞
−∞

R(E)

(
− df(E)

dE

)
dE,

the tern R(E)f(E)

∣∣∣∣∞
−∞

= 0 because R(−∞) = 0 and f(∞) = 0. Whereas the term in parentheses in the integral

above e is very spicy around E = µ (so much so that it behaves like a Dirac delta) it is a good idea to expand
with Taylor the R(E) function around the point µ

q =

∞∑
l=0

1

l!
R(l)(µ)

∫ ∞
−∞

(E − µ)l
(
− df(E)

dE

)
dE,

sinse the function in parentheses is an even function of (E − µ), all the odd derivative disappear so

q =

∞∑
s=0

1

(2s)!
R(2s)(µ)

∫ ∞
−∞

(E − µ)2s

(
− df(E)

dE

)
dE.

Figure 10: Plot of the function in parenthesis, x = E − µ. It’s an even function.

Now the remaning integral can be written as

1

(2s)!

∫ ∞
−∞

(E − µ)2s

(
− df(E)

dE

)
dE ≡ as(kbT )2s

in which as = 1
(2s)!

∫∞
−∞ x2s ex

(ex+1)2 . So, in the end, we can write (noting that R(0)(µ) =
∫ µ
−∞H(E)dE and

R(2s)(µ) = H2s−1(µ))

q =

∫ µ

−∞
H(E)dE +

∞∑
s=1

asH
2s−1(µ)(kbT )2s.

The above expression is the Sommerfeld expantion (SE); it’s based on the fact that the Fermi distribution
even at high temperatures, it keeps its Heaviside theha shape almost unaltered, so the limiti of SE lies in the
fact that at a certain temperature the Fermi distribution will deviate greatly from its shape a T = 0. The power
of the SE lies in the fact that the typical temperatures at which the Fermi distribution differs appreciably from
its original shape are of the order of EFkb ∼ 104K so when the solid is gone.
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Figure 11: Graph of the Fermi distribution for various temperatures (left). Comparison of various nature’s statistics
(right).

The expansion until the fourth order is∫ ∞
−∞

dEH(E)f(E) =

∫ µ

−∞
H(E)dE +

π2

6
H ′(µ)(kbT )2 +

7π4

360
H ′′′(µ)(kbT )4 +O(T 6)

4.2.2 Electonic specific heat

Generally we never go beyond the fourth expansion order, but we will stop at the second to calculate the
corrections to the chemical potential and the electronic spacific heat. The energy density and the density of
electron can be evaluated as

u =

∫ ∞
−∞

EG(E)f(E)dE

n =

∫ ∞
−∞

G(E)f(E)dE

so using SE (in the first case H(E) = EG(E) in the second one H(E) = G(E)) we obtain

u =

∫ µ

−∞
EG(E)dE +

π2

6
(µG′(µ) +G(µ))(kbT )2,

n =

∫ µ

−∞
G(E)dE +

π2

6
G′(µ)(kbT )2,

We assume that the chemical potential corrections are O(T 2) so, since the correction in electron density are
already O(T 2) we can write

n =

∫ µ

−∞
G(E)dE +

π2

6
G′(EF )(kbT )2,

moreover if µ − EF is small, using the integral mean theorem, we have,
∫ µ
−∞G(E)dE =

∫ EF
−∞G(E)dE +∫ µ

EF
G(E)dE ≈

∫ EF
−∞G(E)dE +G(EF )(µ− EF )dE; so

n =

∫ EF

−∞
G(E)dE +G(EF )(µ− EF )dE +

π2

6
G′(EF )(kbT )2 = n0 +G(EF )(µ− EF ) +

π2

6
G′(EF )(kbT )2,

in which n0 is the quantity calculated at T = 0. Since the electron density does not depend on the temperature
we must have

G(EF )(µ− EF ) +
π2

6
G′(EF )(kbT )2 = 0⇒ µ = EF −

π2

6
(kbT )2G

′(EF )

G(EF )

the correction depend on the sign of the derivative of the DOS.
Doing the same kind of simplifications in the case of energy density we obtain

u = u0 + EFG(EF )(µ− EF ) +
π2

6
EFG

′(EF )(kbT )2 +
π2

6
G(EF )(kbT )2

= u0 + EF [G(EF )(µ− EF ) +
π2

6
G′(EF )(kbT )2] +

π2

6
G(EF )(kbT )2

= u0 +
π2

6
G(EF )(kbT )2
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given that [G(EF )(µ − EF ) + π2

6 G
′(EF )(kbT )2] = 0; and in which u0 is the quantity calculated at T = 0. We

can calculate, now, the specific heat

cv =
∂u

∂T
=
π2

3
G(EF )k2

bT,

the electonic specific heat is linear in T in the limit of "low" temperature. In the section on phonons we have
seen that in 3−D system the specific heat due to the ions oscillation (due to the phonons) goes to zero like T 3,
so the total specific heat goes like

ctotv = celv + cphonv = aT + bT 3.

If we plot the quantity ctotv
T vs T 2 we can extrapolate the electronic specific heat (given by the intercept of the

right line multiplied by T ) and the phonon specific heat (given by the slope of the right line multiplied by T 3).

4.3 Semiclassical theory of transport phenomena in metals
Whenever a system is put out of equilibrium, it will host processes that tend to bring it back to equilibrium.
These processes are called transport phenomena. The causes that produce the non-equilibrium conditions will
henceforth be called forces. There are two possibilities: if the forces are removed after producing the non-
equilibrium conditions, the system will relax back to equilibrium. Once equilibrium is regained, the transport
processes will stop. If the system is permanently forced out of equilibrium, the transport processes will contin-
uously attempt to restore equilibrium, without stopping. If the forces are stationary, a steady non-equilibrium
states will be reached and the system will host steady transport processes.

When characterising the non-equilibrium state of a metal, within a semiclassical picture, one is led to consider
the distribution of conduction electrons with a given quasi-momentum ~k. The distribution function gn(~r,~k, t)

is such that the number of electrons belonging to the n-th band, with quasi-momentum ~k in the infinitesimal
volume element d~k of reciprocal space and whose position ~r is comprised within the infinitesimal volume element
d~r, at time t, is

dNn = gn(~r,~k, t)
d~rd~k

(2π)3
.

We can define the concept of local equilibrium in the infinitesimal volume element as the condition such that
the distribution function is of the form

g0
n(~r,~k, t) =

1

eβ(~r,t)[En(~k)−µ(~r,t)] + 1
,

it corresponds to the Fermi distribution function for given local and instantaneous values of the chemical
potential µ and temperature T , En(~k) indicates the dispersion of Bloch electrons belonging to the n-th band.

In a system of independent particles, the distribution function is conserved along the time evolution of the
system (Liouville’s theorem)

dgn(~r,~k, t)

dt
=
∂gn(~r,~k, t)

∂~r
· d~r
dt

+
∂gn(~r,~k, t)

∂~k
· d
~k

dt
+
∂gn(~r,~k, t)

∂t
=
∂gn(~r,~k, t)

∂~r
· ~vn+

∂gn(~r,~k, t)

∂~k
·~̇k+

∂gn(~r,~k, t)

∂t
= 0,

using the semiclassical equations of motion for Bloch electrons in the case of EM field we obtain

1

~
∂gn(~r,~k, t)

∂~r
· ∂En(~k)

∂~k
− e

~
∂gn(~r,~k, t)

∂~k
· [ ~E(~r, t) +

1

c~
∂En(~k)

∂~k
× ~H(~r, t)] +

∂gn(~r,~k, t)

∂t
= 0.

Of course, in a perfect Fermi gas, where all interactions between the electrons are neglected (so no collision),
no relaxation to equilibrium is possible for gn(~r,~k, t). To describe relaxation process, we are forced to consider
collisions between the electrons (or with other degrees of freedom); in such case dgn(~r,~k,t)

dt 6= 0 and so

1

~
∂gn(~r,~k, t)

∂~r
· ∂En(~k)

∂~k
− e

~
∂gn(~r,~k, t)

∂~k
· [ ~E(~r, t) +

1

c~
∂En(~k)

∂~k
× ~H(~r, t)] +

∂gn(~r,~k, t)

∂t
= Icoll(gn(~r,~k, t)).

The above equation is the Boltzmann equation, describing the evolution of a given system under arbitrary non-
equilibrium conditions, where the collision integral, Icoll(gn(~r,~k, t)), is a non-linear functional of dgn(~r,~k, t); the
resulting equation in a non-linear integro-differential equation, which is quite difficult to treat in general.

So, collisions are the mechanisms that restores equilibrium, or allows the system to reach a steady state
under stationary non equilibrium conditions. For Bloch electrons, quasi-momentum is a conserved quantity in
equilibrium, so the interaction with a perfectly periodic crystal lattice cannot produce relaxation. Collisions
arise when electrons are scattered by imperfections of the lattice (crystal defects, impurities, vacancies, etc), by
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lattice vibrations (electron-phonon interactions), or by other electrons, when the electron- electron interaction
is taken into account.

To solve the Boltzmann equation is important remember that in many circumstances, the empirical expe-
rience shows that, if a system is weakly out of equilibrium, the relaxation is exponential, and is governed by a
characteristic relaxation time, which is the characteristic time scale of the fastest collision mechanism. In any
case, the assumption of an exponential relaxation, will usually provide a first crude description of the relaxation
to equilibrium (or to a steady non-equilibrium state). Mathematically this means to write the collision integral
as

Icoll(gn(~r,~k, t)) = − (gn(~r,~k, t)− g0
n(~r,~k, t))

τ
,

where τ ≡ τn(~r,~k) is the relaxation time. This expression guarantees that gn(~r,~k, t) relaxes exponentially to its
(local) equilibrium value. In weak non-equilibrium conditions the band index n is not involved in the relaxation
process and will be omitted the index. Therefore Boltzmann’s equation becomes (simplifying the notation, pay
attention that we write g0

n as g0)

1

~
∂g

∂~r
· ∂E
∂~k
− e

~
∂g

∂~k
· [ ~E(~r, t) +

1

c~
∂E

∂~k
× ~H(~r, t)] +

∂g

∂t
= − (g − g0)

τ
.

Considering situations where the forces that bring the system out of equilibrium are weak enough, so that
g deviates but slightly from the equilibrium value; so we can approximate the derivatives with respect to the
position and the quasi momentum considering the linear response

∂g

∂~r
≈ ∂g0

∂T

∂T

∂~r
+
∂g0

∂µ

∂µ

∂~r
;

∂g

∂~k
≈ ∂g0

∂E

∂E

∂~k
,

and Boltzmann’s equation becomes ( for simplicity we consider absent temperature and chemical potential
gradients)

− e
~
∂g0

∂E

∂E

∂~k
· [ ~E(~r, t) +

1

c~
∂E

∂~k
× ~H(~r, t)] +

∂g

∂t
= − (g − g0)

τ

⇒ − e
~
∂g0

∂E

∂E

∂~k
· ~E(~r, t) +

∂g

∂t
= − (g − g0)

τ

⇒ −e∂g0

∂E
~v · ~E(~r, t) +

∂g

∂t
= − (g − g0)

τ
,

given the first semiclassical equation. This equation shows that a stationary non-equilibrium state is reached in
the presence of absent temperature and chemical potential gradients, and constant electric field, in which the
deviation of g from its equilibrium value g0 is linear in the forces that keep the system out of equilibrium. Non-
linear corrections will arise beyond the linear response theory. We point out that the magnetic field disappeared
from the linearized Boltzmann equation. This does not mean that the magnetic field disappears altogether,
because it still determines the time evolution of ~k through the semiclassical equations of motion for Bloch
electrons.

To illustrate how the transport properties of a metal can be described within the approach developed so far,
let us consider the case of a uniform electric field is present, which depends on time as a simple harmonic

~E(t) = ~Eωe
iωt,

Let us call δg ≡ g − g0 the deviation of the distribution from its equilibrium value. We can look for a solution
of the Boltzmann equation in which δg has the same time dependence as the electric field,

δg(t) = δgωe
iωt.

When T and µ are constant, g0 does not depend on time, so that

∂g

∂t
=
∂δg

∂t
= iωδgωe

iωt

and the Boltzmann equation becomes

−e∂g0

∂E
~v · ~Eω + iωδgω = −δgω

τ
⇒ δgω =

e

iω + 1
τ

∂g0

∂E
~v · ~Eω.
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The value of the current density ~j (the transport phenomenon that is induced by the electric field) is found
calculating the average value of the velocity with the non-equilibrium distribution g, times the charge of an
electron (that the average velocity vanishes when calculated with the equilibrium distribution g0)

~j(t) = −2e

∫
FBZ

~vδg
d~k

(2π)3
,

using the explicit solution for δg, we find ~j(t) = ~jωe
iωt

~j(t) = −2e2

∫
FBZ

1

iω + 1
τ

∂g0

∂E
~v(~v · ~Eω)

d~k

(2π)3
eiωt ⇒ ~jω = −2e2

∫
FBZ

1

iω + 1
τ

∂g0

∂E
~v(~v · ~Eω)

d~k

(2π)3
,

since the quantity ∂g0
∂E forces the integrand to be evaluated at the Fermi surface, τ becomes a constant τ(EF )

so
~jω = − 2e2

iω + 1
τ

∫
FBZ

∂g0

∂E
~v(~v · ~Eω)

d~k

(2π)3
.

From the above equations, given that ji = σijEj , we can find the conductivity tensor

σij = − 2e2

iω + 1
τ

∫
FBZ

∂g0

∂E
vivj

d~k

(2π)3
= − 2e2

iω + 1
τ

∫
FBZ

∂g0

∂E

1

~2

∂E

∂ki

∂E

∂kj

d~k

(2π)3

= − 2e2

iω + 1
τ

∫
FBZ

1

~2

∂g0

∂ki

∂E

∂kj

d~k

(2π)3
=

2e2

iω + 1
τ

∫
FBZ

g0
1

~2

∂2E

∂ki∂kj

d~k

(2π)3

=
2e2

iω + 1
τ

∫
FBZ

g0m
−1
ij

d~k

(2π)3
,

in the penultimate step we integrated by parts (considering that the integrand is periodic so that the contribution
evaluated at the boundaries of the first Brillouin zone vanishes). The Fermi distribution function g0 selects the
occupied states. However, the inverse mass tensor is a periodic function, its integral over the entire first Brillouin
zone vanishes so, again, filled band are inert.

For free electrons the inverse mass tensor is proportional to the identity matrix m−1
ij =

δij
m , where m is the

free electron mass; so σij = σδij with

σ =
2e2

m(iω + 1
τ )

∫
occupied

d~k

(2π)3
=
ne2τ

m

1

1 + iωτ
,

given that the integral over the occupied states yielding the conduction electron density n. In the limit of DC
current (ω → 0) we obtain the Drude conductivity (the Drude model electrons in solids as a perfect gas)

σ =
ne2τ

m
.
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5 Semiconductors
We pay attention on a particular type of solid, a solid that is neither conductor nor insulator; we’re talking
about semiconductor. In semiconductor solids, like Si or Ge, the GAP between valence band and conducting
band is more or less a few eV or fraction of eV. The peculiarity of semiconductor materials is that when they
are thermally excited some inert electrons can cross the GAP and became conducting electrons. We’ll study
pure (intrinsic) semiconductors and doped (extrinsic) semiconductors.

5.1 Intrinsic semiconductors
A T = 0 we identify the conduction and the valence band; when we thermally excited the electrons of the
material only the electrons that are close to the Fermi energy (those one that are close to the top of the valence
band) can be excited. The excited electrons cross the GAP to go to the bottom of the conducting band (their
energy are close to the minimum of the conducting band) and leaves a empty spaces in the valence band, we
call this empty spaces of electrons "holes"; we can describe our system using the electrons in the conducting
band or the holes in the valence band. Since electrons and holes are close to singular point we can develop their
dispersion relation using Taylor expansion

Eelectrons~k
= Ec +

1

2

∑
i,j

∂2E(~k)

∂ki∂kj
kikj ,

Eholes~k
= Ec −

1

2

∑
i,j

∂2E(~k)

∂ki∂kj
kikj .

that we can rewrite as

Eelectrons~k
= Ec +

~2

2

∑
i,j

m−1
e,ijkikj ,

Eholes~k
= Ec −

~2

2

∑
i,j

m−1
h,ijkikj .

in which m−1
ij = 1

~2

∂2E(~k)
∂ki∂kj

is known as inverse mass tensor. Holes are identical to electrons but they have
a negative mass tensor, so we can move the minus sign from mass to acceleration and consider the holes as
electrons with positive charge.

Two important quantities in semiconductors physic are the density of holes in valence band, pv, and electrons
in conducting band, nc,

nc(T ) =

∫ ∞
Ec

Gc(E)f(E)dE,

pv(T ) =

∫ Ev

−∞
Gv(E)(1− f(E))dE,

here f(E) is the Fermi-Dirac distribution and G(E) is the density of state. To evaluate this two integrals we
make the assumption (remembering that kbT = 25meV at room temperature) that Ec − µ, µ−Ev >> kbT , so

nc(T ) ≈
∫ ∞
Ec

Gc(E)e
− (E−µ)

kbT dE ⇒ nc(T ) ≈ Nc(T )e
− (Ec−µ)

kbT ,

pv(T ) ≈
∫ Ev

−∞
Gv(E)e

− (µ−E)
kbT dE ⇒ pv(T ) ≈ Pv(T )e

− (µ−Ev)
kbT ,

in which we had multiplied the first equation for e
Ec
kbT e

− Ec
kbT , the second for e

Ev
kbT e

− Ev
kbT and we also defined

Nc(T ) and Pv(T ) as

Nc(T ) =

∫ ∞
Ec

Gc(E)e
− (E−Ec)

kbT dE ⇒ Nc(T ) =

√
2πm3

e

2π2~3
(kbT )

3
2 ,

Pv(T ) =

∫ Ev

−∞
Gv(E)e

− (Ev−E)
kbT dE ⇒ Pv(T ) =

√
2πm3

h

2π2~3
(kbT )

3
2 .
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The above integrals are evaluated starting from the calculation of the DOS, Gj(E) =
∫

d~k
4π3 δ(E−E~k,j), more-

over, me = (me,xxme,yyme,zz)
1
3 and mh = (mh,xxmh,yymh,zz)

1
3 . Now, if we consider the product nc(T )pv(T ),

the dependence from the chemical potential disappear

nc(T )pv(T ) = Nc(T )Pv(T )e
−Ec−EpkbT = Nc(T )Pv(T )e

−EGAPkbT ≡ n2
i ,

this equation is known as mass action law.
In the case of pure semiconductor the only electrons that can cross the GAP are those one that are in the

valence band and so the number density of electrons in conducting band and the number of density of holes in
valence band must be equal

nc(T ) = pv(T ) ≡ ni(T );

so we obtain

ni(T ) =
√
Nc(T )Pv(T )e

−Ec−Ep2kbT =
√
Nc(T )Pv(T )e

−EGAP2kbT =
1

4

(
2kbT

π~2

) 3
2

(memh)
3
4 e
−EGAP2kbT .

We are now interested to the chemical potential; if we consider the ratio between nc(T ) and pv(T )

1 =
nc(T )

pv(T )
=
Nc(T )

Pv(T )
e
−Ec+Ev−2µ

kbT ⇒ µ =
Ec + Ev

2
− kbT

2
ln

(
Nc(T )

Pv(T )

)
.

Using the equations for Nc(T ) and Pv(T ) we have for the chemical potential

µ = Ev +
EGAP

2
− 3kbT

4
ln

(
me

mh

)
≡ µi,

we note that at T = 0 the chemical potential is exactly in the middle between the two bands.
In the intrinsic regime, the components of the conductivity tensor along the principal axes are

σxx = eni(µe,xx + µh,xx) = e2niτ

(
1

me,xx
+

1

mh,xx

)
;

σyy = eni(µe,yy + µh,yy) = e2niτ

(
1

me,yy
+

1

mh,yy

)
;

σzz = eni(µe,zz + µh,zz) = e2niτ

(
1

me,zz
+

1

mh,zz

)
,

in general

σij = eni(µe,ij + µh,ij) = e2niτ

(
1

me,ij
+

1

mh,ij

)
.

Remember that the resistivity is the inverse of the conductivity, ρij = 1
σij

.
We emphasize that what has been done up to the law of mass action (included) has a completely general

validity and does not depend on the type of semiconductor.

5.2 Extrinsic semiconductors
An extrinsic semiconductor is a semiconductor with some impurities and they contribute a significant amount of
the conducting electrons. The process of inserting impurities is said "doping" and the semiconductor material
is said "doped". The process consists in the insertion of atoms of different valence with respect to those one
constituting the material, for example in the case of homogeneous Si (that have valence 4), we can insert atom
like B (valence 3) or As (valence 5). The impurity with less valence respect to the atoms of the materials
are called acceptors because they form less bonds and so they bring some holes and so they can accept some
electrons, while the impurity with more valence respect to the atoms of the materials are called donors because
they are able to form more bonds and so they bring some electrons. In this case the density of carriers are not
the same, so we define ∆n = nc − pv. We consider only semiconductors doped with atoms with valence +1 or
-1 respect to the atoms of the semiconductor material.

A semiconductor is

• if the semiconductor is doped with acceptors (more holes than electrons, so ∆n < 0) ⇒ p−type;

• if the semiconductor is doped with donors (more electrons than holes, so ∆n > 0) ⇒ n−type.
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Multiplying the definition of ∆n for pv we obtain

∆npv = ncpv − p2
v ⇒ ∆npv = n2

i − p2
v,

in the last passage we use the definition of ni. Multiplying, instead, the definition of ∆n for nc we have

∆nnc = −ncpv + n2
c ⇒ ∆nnc = −n2

i + n2
c .

Solving the first equation for pv and the second for nc we found

pv =
−∆n+

√
(∆n)2 + 4n2

i

2
;

nc =
∆n+

√
(∆n)2 + 4n2

i

2
;

At this point we expand our solutions in the regimes in which ∆n
ni

in small and ∆n
ni

is large, so

nc ≈
∆n

2
+ ni;

pv ≈ −
∆n

2
+ ni,

for ∆n
ni

small, and

nc ≈
∆n

2
+
|∆n|

2

(
1 +

2n2
i

(∆n)2

)
;

pv ≈ −
∆n

2
+
|∆n|

2

(
1 +

2n2
i

(∆n)2

)
,

for ∆n
ni

large. The latter case is to be studied more closely, in fact we have

∆n large and positive⇒ nc ≈ ∆n, pv ≈
n2
i

∆n
⇒ Extreme n− type;

∆n large and negative⇒ nc ≈
n2
i

|∆n|
, pv ≈ |∆n| ⇒ Extreme p− type.

The quantity ∆n
ni

is important because measures the impurity in the semiconductor and can be expressed as a
function of chemical potential, in fact

nc = Nc(T )e−β(Ec−µi)eβ(µ−µi) = nie
β(µ−µi)

pv = Pv(T )e−β(µi−Ev)e−β(µ−µi) = nie
−β(µ−µi)

so
∆n

ni
=
nc − pv
ni

= 2sinh[β(µ− µi)],

so we can classify the doped semiconductors as

• n-type if µ > µi;

• p-type if µ < µi.

The effect of the impurities is to form new levels called donors and acceptors levels and the energy of the
donors levels is slightly below Ec while the energy of the acceptors levels is slightly above Ev; so is far easier
thermally to excite an electron into the conduction band from a donor level or a hole into the valence band
from an acceptor level, in other words, doping a semiconductor causes the material to have a smaller GAP. We
are interested to the density number of electrons (holes) in the donors (acceptors) levels; calling respectively
Na and Nd the density of acceptors and donors we have

nd = 〈n〉Nd = Nd

∑
j Nje

−β(Ej−µNj)∑
j e
−β(Ej−µNj)

;

pa = 〈p〉Na = Na

∑
j Nje

−β(µNj−Ej)∑
j e
−β(µNj−Ej)

,

where 〈n〉 is the mean number of electrons in donors levels when there is only 1 donor impurity (in other words,
〈n〉 is the mean number of electrons in donors levels per unit density of donors), in the same way 〈p〉 is the
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mean number of holes in acceptors levels when there is only 1 acceptor impurity (so, 〈p〉 is the mean number
of holes in acceptors levels per unit density of acceptors). Since both electrons and holes are fermions they
must obey to Pauli principle and so we can have at maximum 2 electrons (holes) in each donor (acceptor) level,
moreover due to the coulombian repulsion the configuration with 2 electrons (holes) in the same level is strongly
depleted by the Boltzmann factor; doing all the calculation we obtain (remembering that we are neglecting all
spin contributions to the hamiltonian)

nd =
Nd

1
2e
β(Ed−µ) + 1

;

pa =
Na

1
2e
β(µ−Ea) + 1

.

At T = 0, Na electrons (per unit volume) dropped from the donors levels to the acceptors levels (we have
Na holes (per unite volume) in the acceptors levels), so we have Nd − Na electrons (per unit volume) in the
donors levels. When T increases, at thermal equilibrium, the electrons will be redistributed in all possible levels
but, since the total number of electrons must be the same, the number density nc + nd must exceed it’s value
at T = 0 (the value Nd−Na) by the number of empty levels in the valence and acceptors levels (so the number
of holes in those levels)

nc + nd = Nd −Na + pv + pa.

At this point, we restrict us to the case in which Ed − µ >> kbT and µ − Ea >> kbT and we note that this
condition is more restrictive than the condition adopted in the intrinsic case because the GAP between acceptors
and donors levels is smaller than the GAP between valence and conducting band. Using this ansatz (called fully
ionize regime) we have

nd =
Nd

1
2e
β(Ed−µ) + 1

<< Nd;

pa =
Na

1
2e
β(µ−Ea) + 1

<< Na,

therefore
nc = Nd −Na + pv ⇒ nc − pv = ∆n = Nd −Na,

so in all the above equations we can replace ∆n with Nd −Na, we obtain

∆n = Nd −Na large and positive⇒ nc ≈ Nd −Na, pv ≈
n2
i

Nd −Na
⇒ Extreme n− type;

∆n = Nd −Na large and negative⇒ nc ≈
n2
i

|Nd −Na|
, pv ≈ |Nd −Na| ⇒ Extreme p− type.

Finally, remembering that ∆n = 2nisinh[β(µ − µi)] and that in the extreme n-type we have µ >> µi and
that in the extreme p-type we have µ << µi we can find the chemical potential in the limit of extreme doped
semiconductor

• extreme n-type if µ >> µi ⇒ sinh[β(µ−µi)] = eβ(µ−µi) ⇒ Nd−Na
ni

= eβ(µ−µi) ⇒ µ = µi+kbT ln

(
Nd−Na
ni

)
;

• extreme p-type if µ << µi ⇒ sinh[β(µ−µi)] = eβ(µi−µ) ⇒ Nd−Na
ni

= eβ(µi−µ) ⇒ µ = µi−kbT ln
(
Na−Nd
ni

)
.

Fanally, in the extrinsic regime, the components of the conductivity tensor along the principal axes are

σxx = e(ncµe,xx + pvµh,xx) = e2τ

(
nc

me,xx
+

pv
mh,xx

)
;

σyy = e(ncµe,yy + pvµh,yy) = e2τ

(
nc

me,yy
+

pv
mh,yy

)
;

σzz = e(ncµe,zz + pvµh,zz) = e2τ

(
nc

me,zz
+

pv
mh,zz

)
,

in general

σij = e(ncµe,ij + pvµh,ij) = e2τ

(
nc
me,ij

+
pv

mh,ij

)
.

Remember that the resistivity is the inverse of the conductivity, ρij = 1
σij

.
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